Equilibration of Baroclinic Instability in Westward Flows

Timour Radko aDepartment of Oceanography, Naval Postgraduate School, Monterey, California

Search for other papers by Timour Radko in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams bDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
Georgi G. Sutyrin cGraduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Georgi G. Sutyrin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We explore the dynamics of baroclinic instability in westward flows using an asymptotic weakly nonlinear model. The proposed theory is based on the multilayer quasigeostrophic framework, which is reduced to a system governed by a single nonlinear prognostic equation for the upper layer. The dynamics of deeper layers are represented by linear diagnostic relations. A major role in the statistical equilibration of baroclinic instability is played by the latent zonally elongated modes. These structures form spontaneously in baroclinically unstable systems and effectively suppress the amplification of primary unstable modes. Special attention is given to the effects of bottom friction, which is shown to control both linear and nonlinear properties of baroclinic instability. The reduced-dynamics model is validated by a series of numerical simulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timour Radko, tradko@nps.edu

Abstract

We explore the dynamics of baroclinic instability in westward flows using an asymptotic weakly nonlinear model. The proposed theory is based on the multilayer quasigeostrophic framework, which is reduced to a system governed by a single nonlinear prognostic equation for the upper layer. The dynamics of deeper layers are represented by linear diagnostic relations. A major role in the statistical equilibration of baroclinic instability is played by the latent zonally elongated modes. These structures form spontaneously in baroclinically unstable systems and effectively suppress the amplification of primary unstable modes. Special attention is given to the effects of bottom friction, which is shown to control both linear and nonlinear properties of baroclinic instability. The reduced-dynamics model is validated by a series of numerical simulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timour Radko, tradko@nps.edu
Save
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, https://doi.org/10.1017/S0022112009006375.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567, https://doi.org/10.1017/jfm.2011.345.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, https://doi.org/10.1002/qj.49709239302.

    • Search Google Scholar
    • Export Citation
  • Brown, J., L. Gulliver, and T. Radko, 2019: Effects of topography and orientation on the nonlinear equilibration of baroclinic instability. J. Geophys. Res. Oceans, 124, 67206734, https://doi.org/10.1029/2019JC015297.

    • Search Google Scholar
    • Export Citation
  • Chang, C., and I. M. Held, 2021: The parameter dependence of eddy heat flux in a homogeneous quasigeostrophic two-layer model on a β plane with quadratic friction. J. Atmos. Sci., 78, 97106, https://doi.org/10.1175/JAS-D-20-0145.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1948: On the scale of atmospheric motions. Geofys. Publ., 17, 117.

  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 2011: A closure for meso-scale eddy fluxes based on linear instability theory. Ocean Modell., 39, 362369, https://doi.org/10.1016/j.ocemod.2011.05.009.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Frisius, T., 1998: A mechanism for the barotropic equilibration of baroclinic waves. J. Atmos. Sci., 55, 29182936, https://doi.org/10.1175/1520-0469(1998)055<2918:AMFTBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large‐scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, https://doi.org/10.1002/qj.49709640802.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: Scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holipainen, E. O., 1961: On the effect of friction in baroclinic waves. Tellus, 13, 363367, https://doi.org/10.3402/tellusa.v13i3.9512.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 31623175, https://doi.org/10.1175/2009JPO4239.1.

    • Search Google Scholar
    • Export Citation
  • Khatri, H., and P. Berloff, 2018: Role of eddies in the maintenance of multiple jets embedded in eastward and westward baroclinic shears. Fluids, 3, 91, https://doi.org/10.3390/fluids3040091.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., J. Escartin, E. P. Chassignet, and X. Xu, 2019: Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr., 49, 585605, https://doi.org/10.1175/JPO-D-18-0129.1.

    • Search Google Scholar
    • Export Citation
  • Larichev, V., and I. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 22852297, https://doi.org/10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkus, W. V. R., and G. Veronis, 1958: Finite amplitude cellular convection. J. Fluid Mech., 4, 225260, https://doi.org/10.1017/S0022112058000410.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, https://doi.org/10.1029/2008GL033267.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2008: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 515.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106, https://doi.org/10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1970: Finite-amplitude baroclinic waves. J. Atmos. Sci., 27, 1530, https://doi.org/10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1971: Finite-amplitude baroclinic waves with small dissipation. J. Atmos. Sci., 28, 587597, https://doi.org/10.1175/1520-0469(1971)028<0587:FABWWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1981: Nonlinear dynamics of baroclinic wave ensembles. J. Fluid Mech., 102, 169209, https://doi.org/10.1017/S0022112081002590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1982a: Finite-amplitude baroclinic waves at minimum critical shear. J. Atmos. Sci., 39, 555562, https://doi.org/10.1175/1520-0469(1982)039<0555:FABWAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1982b: A simple model for nonlinear critical layers in an unstable baroclinic wave. J. Atmos. Sci., 39, 21192127, https://doi.org/10.1175/1520-0469(1982)039<2119:ASMFNC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Pedlosky, J., 2019: The effect of beta on the downstream development of unstable, chaotic baroclinic waves. J. Phys. Oceanogr., 49, 23372343, https://doi.org/10.1175/JPO-D-19-0097.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1951: A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Atmos. Sci., 8, 381394, https://doi.org/10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2010: Equilibration of weakly nonlinear salt fingers. J. Fluid Mech., 645, 121143, https://doi.org/10.1017/S0022112009992552.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2016: On the generation of large-scale eddy-induced patterns: The average eddy model. J. Fluid Mech., 809, 316344, https://doi.org/10.1017/jfm.2016.668.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2020: Control of baroclinic instability by submesoscale topography. J. Fluid Mech., 882, A14, https://doi.org/10.1017/jfm.2019.826.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and I. Kamenkovich, 2017: On the topographic modulation of large-scale eddying flows. J. Phys. Oceanogr., 47, 21572172, https://doi.org/10.1175/JPO-D-17-0024.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., D. P. de Carvalho, and J. Flanagan, 2014: Nonlinear equilibration of baroclinic instability: The growth rate balance model. J. Phys. Oceanogr., 44, 19191940, https://doi.org/10.1175/JPO-D-13-0248.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 2012: Eddies in Marine Science. Springer, 900 pp.

  • Robinson, A. R., and J. C. McWilliams, 1974: The baroclinic instability of the open ocean. J. Phys. Oceanogr., 4, 281294, https://doi.org/10.1175/1520-0485(1974)004<0281:TBIOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romea, R. D., 1977: The effects of friction and β on finite-amplitude baroclinic waves. J. Atmos. Sci., 34, 16891695, https://doi.org/10.1175/1520-0469(1977)034<1689:TEOFAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, https://doi.org/10.1175/JAS-D-11-0200.1.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., and T. Radko, 2021: Why the most long-lived oceanic vortices are found in the subtropical westward flows. Ocean Modell., 161, 101782, https://doi.org/10.1016/j.ocemod.2021.101782.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., T. Radko, and J. C. McWilliams, 2021a: Self-amplifying hetons in vertically sheared geostrophic turbulence. Phys. Fluids, 33, 101705, https://doi.org/10.1063/5.0071017.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., T. Radko, and J. Nycander, 2021b: Steady radiating baroclinic vortices in vertically sheared flows. Phys. Fluids, 33, 031705, https://doi.org/10.1063/5.0040298.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36, 720738, https://doi.org/10.1175/JPO2874.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143231, https://doi.org/10.1175/JAS4000.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vollmer, L., and C. Eden, 2013: A global map of meso-scale eddy diffusivities based on linear stability analysis. Ocean Modell., 72, 198209, https://doi.org/10.1016/j.ocemod.2013.09.006.

    • Search Google Scholar
    • Export Citation
  • Warn, T., and P. Gauthier, 1989: Potential vorticity mixing by marginally unstable baroclinic disturbances. Tellus, 41A, 115131, https://doi.org/10.3402/tellusa.v41i2.11825.

    • Search Google Scholar
    • Export Citation
  • Willcocks, B. T., and J. G. Esler, 2012: Nonlinear baroclinic equilibration in the presence of Ekman friction. J. Phys. Oceanogr., 42, 225242, https://doi.org/10.1175/JPO-D-11-0112.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 502 0 0
Full Text Views 2433 2064 160
PDF Downloads 446 75 3