• Becker, M., C. Maushake, and C. Winter, 2018: Observations of mud-induced periodic stratification in a hyperturbid estuary. Geophys. Res. Lett., 45, 54615469, https://doi.org/10.1029/2018GL077966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruens, A., J. Winterwerp, and C. Kranenburg, 2012: Physical and numerical modeling of the entrainment by a high-concentration mud suspension. J. Hydraul. Eng., 138, 479490, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., H. M. Schuttelaars, and D. K. Ralston, 2018: Sediment trapping in estuaries. Annu. Rev. Mar. Sci., 10, 371395, https://doi.org/10.1146/annurev-marine-010816-060535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., G. A. Lawrence, and W. D. Smyth, 2007: Evolution and mixing of asymmetric Holmboe instabilities. J. Fluid Mech., 582, 103132, https://doi.org/10.1017/S0022112007005988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caulfield, C. P., 2021: Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech., 53, 113145, https://doi.org/10.1146/annurev-fluid-042320-100458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M. H., S. Y. Jheng, and R. C. Lien, 2016: Trains of large Kelvin‐Helmholtz billows observed in the Kuroshio above a seamount. Geophys. Res. Lett., 43, 86548661, https://doi.org/10.1002/2016GL069462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q. Z., 2021: Rheological study of fine sediment in estuary. M.S. thesis, East China Normal University, 101 pp.

  • Dai, Q., H. X. Shan, W. L. Cui, and Y. G. Jia, 2011: A laboratory study on the relationships between suspended sediment content and the conductivity and their influencing factors (in Chinese with English abstract). Acta Oceanol. Sin., 33, 8894.

    • Search Google Scholar
    • Export Citation
  • Dai, Z., S. Fagherazzi, X. Mei, J. Chen, and Y. Meng, 2016: Linking the infilling of the north branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013. Mar. Geol., 379, 112, https://doi.org/10.1016/j.margeo.2016.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, B. J., and W. E. Pracht, 1968: Numerical study of density-current surges. Phys. Fluids, 11, 1530, https://doi.org/10.1063/1.1691748.

  • Dillon, T. M., and M. M. Park, 1987: The available potential energy of overturns as an indicator of mixing in the seasonal thermocline. J. Geophys. Res., 92, 53455353, https://doi.org/10.1029/JC092iC05p05345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fei, X. J., 1982: Viscosity of high concentration muddy water (in Chinese). Shuili Xeubao, 3, 5763.

  • Fritts, D. C., P. M. Franke, K. Wan, T. Lund, and J. Werne, 2011: Computation of clear-air radar backscatter from numerical simulations of turbulence: 2. Backscatter moments throughout the lifecycle of a Kelvin-Helmholtz instability. J. Geophys. Res. Atmos., 116, D11105, https://doi.org/10.1029/2010JD014618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., G. Baumgarten, K. Wan, J. Werne, and T. Lund, 2014: Quantifying Kelvin‐Helmholtz instability dynamics observed in noctilucent clouds: 2. Modeling and interpretation of observations. J. Geophys. Res. Atmos., 119, 93599375, https://doi.org/10.1002/2014JD021833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukao, S., H. Luce, T. Mega, and M. K. Yamamoto, 2011: Extensive studies of large‐amplitude Kelvin–Helmholtz billows in the lower atmosphere with VHF middle and upper atmosphere radar. Quart. J. Roy. Meteor. Soc., 137, 10191041, https://doi.org/10.1002/qj.807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., A. C. Lavery, M. E. Scully, and J. H. Trowbridge, 2010: Mixing by shear instability at high Reynolds number. Geophys. Res. Lett., 37, L22607, https://doi.org/10.1029/2010GL045272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., D. K. Ralston, and R. C. Holleman, 2017: Hydraulics and mixing in a laterally divergent channel of a highly stratified estuary. J. Geophys. Res. Oceans, 122, 47434760, https://doi.org/10.1002/2016JC012455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2015: Similarity theory based on the Dougherty-Ozmidov length scale. Quart. J. Roy. Meteor. Soc., 141, 18451856, https://doi.org/10.1002/qj.2488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, M. O., and I. McCave, 1995: Seabed drag coefficient under tidal currents in the eastern Irish sea. J. Geophys. Res., 100, 16 05716 069, https://doi.org/10.1029/95JC01381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, C., Q. He, L. Guo, and J. C. Winterwerp, 2017: A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze estuary. Estuarine Coastal Shelf Sci., 191, 19, https://doi.org/10.1016/j.ecss.2017.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harang, A., O. Thual, P. Brancher, and T. Bonometti, 2014: Kelvin–Helmholtz instability in the presence of variable viscosity for mudflow resuspension in estuaries. Environ. Fluid Mech., 14, 743769, https://doi.org/10.1007/s10652-014-9337-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, D., J. Moum, C. Paulson, and D. Caldwell, 1992: Turbulence and internal waves at the equator. Part II: Details of a single event. J. Phys. Oceanogr., 22, 13461356, https://doi.org/10.1175/1520-0485(1992)022<1346:TAIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, P., K. Schrottke, and A. Bartholomä, 2013: Generation and evolution of high-frequency internal waves in the Ems estuary, Germany. J. Sea Res., 78, 2535, https://doi.org/10.1016/j.seares.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, P., K. Bartholomä-Schrottke, and A. Bartholomä, 2019: Indications for the transition of Kelvin-Helmholtz instabilities into propagating internal waves in a high turbid estuary and their effect on the stratification stability. Geo-Mar. Lett., 39, 149159, https://doi.org/10.1007/s00367-019-00564-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holleman, R., W. Geyer, and D. Ralston, 2016: Stratified turbulence and mixing efficiency in a salt wedge estuary. J. Phys. Oceanogr., 46, 17691783, https://doi.org/10.1175/JPO-D-15-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, https://doi.org/10.1017/S0022112061000317.

  • Jaramillo, S., A. Sheremet, M. Allison, A. Reed, and K. Holland, 2009: Wave‐mud interactions over the muddy Atchafalaya subaqueous clinoform, Louisiana, United States: Wave‐supported sediment transport. J. Geophys. Res, 114, C04002, https://doi.org/10.1029/2008JC004821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., and E. Wolanski, 1998: Vertical mixing by internal wave breaking at the lutocline, Jiaojiang River estuary, China. J. Coast. Res., 14, 14261431, https://www.jstor.org/stable/4298904.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., and A. Mehta, 2002, Interfacial instabilities at the lutocline in the Jiaojiang estuary, China. Proc. Mar. Sci., 5, 125137, https://doi.org/10.1016/S1568-2692(02)80012-2.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2008: The influence of whitecapping waves on the vertical structure of turbulence in a shallow estuarine embayment. J. Phys. Oceanogr., 38, 15631580, https://doi.org/10.1175/2007JPO3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J., J. Wyngaard, Y. Izumi, and O. Coté, 1972: Spectral characteristics of surface‐layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, https://doi.org/10.1002/qj.49709841707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminski, A., and W. Smyth, 2019: Stratified shear instability in a field of pre-existing turbulence. J. Fluid Mech., 862, 639658, https://doi.org/10.1017/jfm.2018.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kineke, G., and R. Sternberg, 1995: Distribution of fluid muds on the amazon continental shelf. Mar. Geol., 125, 193233, https://doi.org/10.1016/0025-3227(95)00013-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and S. M. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224234, https://doi.org/10.1016/j.ocemod.2010.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavery, A. C., D. Chu, and J. N. Moum, 2010: Observations of broadband acoustic backscattering from nonlinear internal waves: Assessing the contribution from microstructure. IEEE J. Oceanic Eng., 35, 695709, https://doi.org/10.1109/JOE.2010.2047814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., 1997: Gravity waves in a forest: A linear analysis. J. Atmos. Sci., 54, 25742585, https://doi.org/10.1175/1520-0469(1997)054<2574:GWIAFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. P. Caulfield, and W. R. Peltier, 2017: Role of overturns in optimal mixing in stratified mixing layers. J. Fluid Mech., 826, 522552, https://doi.org/10.1017/jfm.2017.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAnally, W. H., and Coauthors, 2007: Management of fluid mud in estuaries, bays, and lakes. I: Present state of understanding on character and behavior. J. Hydraul. Eng., 133, 922, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(9).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehta, A. J., 2013: An Introduction to Hydraulics of Fine Sediment Transport. Advanced Series on Ocean Engineering, Vol. 38, World Scientific Publishing Company, 1060 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, https://doi.org/10.1017/S0022112061000305.

  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, https://doi.org/10.1029/96JC00508.

  • Moum, J. N., D. Farmer, W. Smyth, L. Armi, and S. Vagle, 2003: Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 20932112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., J. Nash, and W. Smyth, 2011: Narrowband oscillations in the upper equatorial ocean. Part I: Interpretation as shear instabilities. J. Phys. Oceanogr., 41, 397411, https://doi.org/10.1175/2010JPO4450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullarney, J. C., and S. M. Henderson, 2012: Lagrangian measurements of turbulent dissipation over a shallow tidal flat from pulse coherent acoustic Doppler profilers. Coastal Eng. Proc., 33, currents.49, https://doi.org/10.9753/icce.v33.currents.49.

    • Search Google Scholar
    • Export Citation
  • Osborn, T., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Scarlatos, P. D., and A. J. Mehta, 1993: Instability and entrainment mechanisms at the stratified fluid mud-water interface. Nearshore and Estuarine Cohesive Sediment Transport, A. J. Mehta, Ed., Coastal and Estuarine Studies, Vol. 42, Amer. Geophys. Union, 205223, https://doi.org/10.1029/CE042p0205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schatzmann, M., and A. J. Policastro, 1984: Effects of the Boussinesq approximation on the results of strongly-buoyant plume calculations. J. Appl. Meteor. Climatol., 23, 117123, https://doi.org/10.1175/1520-0450(1984)023%3C0117:EOTBAO%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., and B. White, 2016: The mixing efficiency of stratified turbulent boundary layers. J. Phys. Oceanogr., 46, 31813191, https://doi.org/10.1175/JPO-D-16-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, M. E., W. R. Geyer, and J. H. Trowbridge, 2011: The influence of stratification and nonlocal turbulent production on estuarine turbulence: An assessment of turbulence closure with field observations. J. Phys. Oceanogr., 41, 166185, https://doi.org/10.1175/2010JPO4470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1994: Detailed observations of a naturally occurring shear instability. J. Geophys. Res., 99, 10 04910 073, https://doi.org/10.1029/94JC00168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shih, L. H., J. R. Koseff, G. N. Ivey, and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech., 525, 193214, https://doi.org/10.1017/S0022112004002587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., 2020: Marginal instability and the efficiency of ocean mixing. J. Phys. Oceanogr., 50, 21412150, https://doi.org/10.1175/JPO-D-20-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. R. Carpenter, 2019: Instability in Geophysical Flows. Cambridge University Press, 321 pp.

  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 13271342, https://doi.org/10.1063/1.870385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2012: Ocean mixing by Kelvin-Helmholtz instability. Oceanography, 25, 140149, https://doi.org/10.5670/oceanog.2012.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W., J. Moum, and D. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, https://doi.org/10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. D. Nash, and J. N. Moum, 2005: Differential diffusion in breaking Kelvin-Helmholtz billows. J. Phys. Oceanogr., 35, 10041022, https://doi.org/10.1175/JPO2739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. Nash, and J. Moum, 2019: Self-organized criticality in geophysical turbulence. Sci. Rep., 9, 3747, https://doi.org/10.1038/s41598-019-39869-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sottolichio, A., D. Hurther, N. Gratiot, and P. Bretel, 2011: Acoustic turbulence measurements of near-bed suspended sediment dynamics in highly turbid waters of a macrotidal estuary. Cont. Shelf Res., 31, S36S49, https://doi.org/10.1016/j.csr.2011.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stillinger, D., K. Helland, and C. Van Atta, 1983: Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech., 131, 91122, https://doi.org/10.1017/S0022112083001251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J. H., 2007: Characteristics of fine cohesive sediment’s flocculation in the Changjiang estuary and its adjacent sea area. M.S. thesis, East China Normal University, 65 pp.

    • Search Google Scholar
    • Export Citation
  • Tedford, E., J. Carpenter, R. Pawlowicz, R. Pieters, and G. A. Lawrence, 2009: Observation and analysis of shear instability in the Fraser river estuary. J. Geophys. Res., 114, C11006, https://doi.org/10.1029/2009JC005313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, D. G., 1963: Non-Newtonian suspensions—Part I. Physical properties and laminar transport characteristics. Ind. Eng. Chem. Res., 55, 1829, https://doi.org/10.1021/ie50647a004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., 2012: Wave breaking dissipation observed with “SWIFT” drifters. J. Atmos. Oceanic Technol., 29, 18661882, https://doi.org/10.1175/JTECH-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1973: Experiments on the instability and turbulence in a stratified shear flow. J. Fluid Mech., 61, 731751, https://doi.org/10.1017/S0022112073000911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Traykovski, P., J. Trowbridge, and G. Kineke, 2015: Mechanisms of surface wave energy dissipation over a high‐concentration sediment suspension. J. Geophys. Res. Oceans, 120, 16381681, https://doi.org/10.1002/2014JC010245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and G. C. Kineke, 1994: Structure and dynamics of fluid muds on the Amazon continental shelf. J. Geophys. Res. Oceans, 99, 865874, https://doi.org/10.1029/93JC02860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and P. Traykovski, 2015: Coupled dynamics of interfacial waves and bed forms in fluid muds over erodible seabeds in oscillatory flows. J. Geophys. Res. Oceans, 120, 56985709, https://doi.org/10.1002/2015JC010872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J., D. Fan, Y. Zhang, and G. Voulgaris, 2019: Turbulence, sediment-induced stratification, and mixing under macrotidal estuarine conditions (Qiantang Estuary, China). J. Geophys. Res. Oceans, 124, 40584077, https://doi.org/10.1029/2018JC014281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J., D. Fan, Q. Lian, Z. Liu, W. Liu, A. Kaminski, and W. Smyth, 2020: Acoustic observations of Kelvin-Helmholtz billows on an estuarine lutocline. J. Geophys. Res. Oceans, 125, e2019JC015383, https://doi.org/10.1029/2019JC015383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Haren, H., and L. Gostiaux, 2010: A deep‐ocean Kelvin‐Helmholtz billow train. Geophys. Res. Lett., 37, L03605, https://doi.org/10.1029/2009GL041890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinzon, S. B., and A. J. Mehta, 2000: Boundary layer effects due to suspended sediment in the Amazon River Estuary. Proc. Mar. Sci., 3, 359372, https://doi.org/10.1016/S1568-2692(00)80131-X.

    • Search Google Scholar
    • Export Citation
  • Walter, R. K., N. J. Nidzieko, and S. G. Monismith, 2011: Similarity scaling of turbulence spectra and cospectra in a shallow tidal flow. J. Geophys. Res., 116, C10019, https://doi.org/10.1029/2011JC007144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. H., and H. Wang, 2010: Tidal straining effect on the suspended sediment transport in the Huanghe (Yellow River) estuary, China. Ocean Dyn., 60, 12731283, https://doi.org/10.1007/s10236-010-0298-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, P., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 7073, https://doi.org/10.1109/TAU.1967.1161901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiles, P. J., T. P. Rippeth, J. H. Simpson, and P. J. Hendricks, 2006: A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett., 33, L21608, https://doi.org/10.1029/2006GL027050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, J., 1969: On Richardson’s number as a criterion for laminar‐turbulent‐laminar transition in the ocean and atmosphere. Radio Sci., 4, 12891298, https://doi.org/10.1029/RS004i012p01289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, L., Z.-S. Yang, B. Bornhold, G. Keller, D. Prior, W. Wiseman, Y. Fan, and Z. Su, 1986: Short period internal waves over the Huanghe (Yellow River) delta front. Geo-Mar. Lett., 6, 115120, https://doi.org/10.1007/BF02281647.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 764 763 37
Full Text Views 265 265 19
PDF Downloads 313 313 21

Shear Instabilities and Stratified Turbulence in an Estuarine Fluid Mud

Junbiao TuaState Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Search for other papers by Junbiao Tu in
Current site
Google Scholar
PubMed
Close
,
Daidu FanaState Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Search for other papers by Daidu Fan in
Current site
Google Scholar
PubMed
Close
,
Feixiang SunaState Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Search for other papers by Feixiang Sun in
Current site
Google Scholar
PubMed
Close
,
Alexis KaminskibDepartment of Mechanical Engineering, University of California, Berkeley, Berkeley, California

Search for other papers by Alexis Kaminski in
Current site
Google Scholar
PubMed
Close
, and
William SmythcCollege of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by William Smyth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents field observations of fluid mud and the flow instabilities that result from the interaction between mud-induced density stratification and current shear. Data collected by shipborne and bottom-mounted instruments in a hyperturbid estuarine tidal channel reveal the details of turbulent sheared layers in the fluid mud that persist throughout the tidal cycle. Shear instabilities form during periods of intense shear and strong mud-induced stratification, particularly with gradient Richardson number smaller than or fluctuating around the critical value of 0.25. Turbulent mixing plays a significant role in the vertical entrainment of fine sediment over the tidal cycle. The vertical extent of the billows identified seen in the acoustic images is the basis for two useful parameterizations. First, the aspect ratio (billow height/wavelength) is indicative of the initial Richardson number that characterizes the shear flow from which the billows grew. Second, we describe a scaling for the turbulent dissipation rate ε that holds for both observed and simulated Kelvin–Helmholtz billows. Estimates for the present observations imply, however, that billows growing on a lutocline obey an altered scaling whose origin remains to be explained.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: D. Fan, ddfan@tongji.edu.cn; W. Smyth, bill.smyth@oregonstate.edu

Abstract

This study presents field observations of fluid mud and the flow instabilities that result from the interaction between mud-induced density stratification and current shear. Data collected by shipborne and bottom-mounted instruments in a hyperturbid estuarine tidal channel reveal the details of turbulent sheared layers in the fluid mud that persist throughout the tidal cycle. Shear instabilities form during periods of intense shear and strong mud-induced stratification, particularly with gradient Richardson number smaller than or fluctuating around the critical value of 0.25. Turbulent mixing plays a significant role in the vertical entrainment of fine sediment over the tidal cycle. The vertical extent of the billows identified seen in the acoustic images is the basis for two useful parameterizations. First, the aspect ratio (billow height/wavelength) is indicative of the initial Richardson number that characterizes the shear flow from which the billows grew. Second, we describe a scaling for the turbulent dissipation rate ε that holds for both observed and simulated Kelvin–Helmholtz billows. Estimates for the present observations imply, however, that billows growing on a lutocline obey an altered scaling whose origin remains to be explained.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: D. Fan, ddfan@tongji.edu.cn; W. Smyth, bill.smyth@oregonstate.edu

Supplementary Materials

    • Supplemental Materials (PDF 316 KB)
Save