• Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino escarpment. J. Phys. Oceanogr., 40, 26432660, https://doi.org/10.1175/2010JPO4502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. C. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16 94716 968, https://doi.org/10.1029/2000JC000370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, https://doi.org/10.1175/JPO3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, https://doi.org/10.1175/JPO-D-11-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aluie, H., M. Hecht, and G. K. Vallis, 2018: Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach. J. Phys. Oceanogr., 48, 225244, https://doi.org/10.1175/JPO-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J. Phys. Oceanogr., 42, 15771600, https://doi.org/10.1175/JPO-D-11-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, O., and W. R. Young, 2020: Penetration of wind-generated near-inertial waves into a turbulent ocean. J. Phys. Oceanogr., 50, 16991716, https://doi.org/10.1175/JPO-D-19-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, O., L. N. Thomas, W. R. Young, and L. Rainville, 2020: Refraction and straining of near-inertial waves by barotropic eddies. J. Phys. Oceanogr., 50, 34393454, https://doi.org/10.1175/JPO-D-20-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., and W. R. Young, 1999: Radiative damping of near-inertial oscillations in the mixed layer. J. Mar. Res., 57, 561584, https://doi.org/10.1357/002224099321549594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., S. G. Llewellyn Smith, and W. Young, 1998: Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res., 56, 140, https://doi.org/10.1357/002224098321836091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. Srinivasan, L. Yang, J. C. McWilliams, J. Gula, and C. Vic, 2021: Oceanic mesoscale eddy depletion catalyzed by internal waves. Geophys. Res. Lett., 48, e2021GL094376, https://doi.org/10.1029/2021GL094376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, A302, 529554, https://doi.org/10.1098/rspa.1968.0034.

    • Search Google Scholar
    • Export Citation
  • Cuypers, Y., X. Le Vaillant, P. Bouruet-Aubertot, J. Vialard, and M. J. Mcphaden, 2013: Tropical storm-induced near-inertial internal waves during the Cirene experiment: Energy fluxes and impact on vertical mixing. J. Geophys. Res. Oceans, 118, 358380, https://doi.org/10.1029/2012JC007881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danioux, E., J. Vanneste, P. Klein, and H. Sasaki, 2012: Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid Mech., 699, 153173, https://doi.org/10.1017/jfm.2012.90.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., R. Lumpkin, and G. Prieto, 2010: Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res., 115, C09010, https://doi.org/10.1029/2009JC005679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., L. R. Maas, and H. van Haren, 2013: A note on the role of mean flows in Doppler-shifted frequencies. J. Phys. Oceanogr., 43, 432441, https://doi.org/10.1175/JPO-D-12-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, https://doi.org/10.1029/2005GL023289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. M. Toole, P. Klein, and L. N. Thomas, 2013: A near-inertial mode observed within a Gulf Stream warm-core ring. J. Geophys. Res. Oceans, 118, 17971806, https://doi.org/10.1002/jgrc.20141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., G. Lapeyre, and W. Large, 2004a: Wind ringing of the ocean in presence of mesoscale eddies. Geophys. Res. Lett., 31, L15306, https://doi.org/10.1029/2004GL020274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., S. L. Smith, and G. Lapeyre, 2004b: Organization of near-inertial energy by an eddy field. Quart. J. Roy. Meteor. Soc., 130, 11531166, https://doi.org/10.1256/qj.02.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3d simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and T. B. Sanford, 1986: Near-inertial wave interactions with mean flow and bottom topography near Caryn Seamount. J. Phys. Oceanogr., 16, 109120, https://doi.org/10.1175/1520-0485(1986)016<0109:NIWIWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., R. W. Schmitt, and J. M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942957, https://doi.org/10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, https://doi.org/10.1029/97JC03200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., Y. Cuypers, and P. Bouruet-Aubertot, 2020: Near-inertial energy propagation inside a Mediterranean anticyclonic eddy. J. Phys. Oceanogr., 50, 22712288, https://doi.org/10.1175/JPO-D-19-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. C. McWilliams, and J. McWilliams, 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 273 pp.

    • Search Google Scholar
    • Export Citation
  • Mooers, C. N., 1975: Several effects of a baroclinic current on the cross-stream propagation of inertial-internal waves. Geophys. Astrophys. Fluid Dyn., 6, 245275, https://doi.org/10.1080/03091927509365797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, https://doi.org/10.1017/S0022112076002899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, E. Kunze, and A. Mahadevan, 2015: Spontaneous generation of near-inertial waves by the Kuroshio Front. J. Phys. Oceanogr., 45, 23812406, https://doi.org/10.1175/JPO-D-14-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., Y. Niwa, and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the north pacific. J. Geophys. Res., 105, 13 93313 943, https://doi.org/10.1029/2000JC900019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plueddemann, A., and J. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530, https://doi.org/10.1016/j.dsr2.2005.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2008: Mesoscale eddy–internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment. J. Phys. Oceanogr., 38, 25562574, https://doi.org/10.1175/2008JPO3666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy–internal wave coupling. Part II: Energetics and results from polymode. J. Phys. Oceanogr., 40, 789801, https://doi.org/10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, https://doi.org/10.1029/2010RG000329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J. S. von Storch, C. Eden, and H. Haak, 2013: The influence of high–resolution wind stress field on the power input to near–inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, https://doi.org/10.1002/grl.50929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., G. L. Wagner, and W. R. Young, 2018: Stimulated generation: Extraction of energy from balanced flow by near-inertial waves. J. Fluid Mech., 847, 417451, https://doi.org/10.1017/jfm.2018.308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. Taylor, 2014: The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: Theory. J. Fluid Mech., 757, 817853, https://doi.org/10.1017/jfm.2014.514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2018: The life cycle of spontaneously generated internal waves. J. Phys. Oceanogr., 48, 343359, https://doi.org/10.1175/JPO-D-17-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., A. H. Gibson, A. M. Hogg, S. D. Bachman, S. R. Keating, and N. Velzeboer, 2021: A new open source implementation of Lagrangian filtering: A method to identify internal waves in high-resolution simulations. J. Adv. Model. Earth Syst., 13, e2021MS002616, https://doi.org/10.1029/2021MS002616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39, 10351049, https://doi.org/10.1175/2008JPO3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, https://doi.org/10.5670/oceanog.2012.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S., and D. Straub, 2016: Forced near-inertial motion and dissipation of low-frequency kinetic energy in a wind-driven channel flow. J. Phys. Oceanogr., 46, 7993, https://doi.org/10.1175/JPO-D-15-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2012: On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech., 711, 620640, https://doi.org/10.1017/jfm.2012.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2019: Enhanced radiation of near-inertial energy by frontal vertical circulations. J. Phys. Oceanogr., 49, 24072421, https://doi.org/10.1175/JPO-D-19-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J., and D. Daniel, 2020: Turbulent exchanges between near-inertial waves and balanced flows. J. Fluid Mech., 902, A7, https://doi.org/10.1017/jfm.2020.510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Meurs, P., 1998: Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, 13631388, https://doi.org/10.1175/1520-0485(1998)028%3C1363:IBNIML%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G., and W. Young, 2016: A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic. J. Fluid Mech., 802, 806837, https://doi.org/10.1017/jfm.2016.487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, https://doi.org/10.1175/JPO-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2015: Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr., 45, 181208, https://doi.org/10.1175/JPO-D-14-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W., and M. B. Jelloul, 1997: Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735766, https://doi.org/10.1357/0022240973224283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Sheng, 2004: Advective spreading of storm-induced inertial oscillations in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 31, L14315, https://doi.org/10.1029/2004GL020084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Zhao, 2005: Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, https://doi.org/10.1029/2005GL023643.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 471 471 19
Full Text Views 175 175 8
PDF Downloads 240 240 9

The Wavelength Dependence of the Propagation of Near-Inertial Internal Waves

Jemima RamaaResearch School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Jemima Rama in
Current site
Google Scholar
PubMed
Close
,
Callum J. ShakespeareaResearch School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Callum J. Shakespeare in
Current site
Google Scholar
PubMed
Close
, and
Andrew McC. HoggaResearch School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wind-generated near-inertial internal waves (NIWs) are triggered in the mixed layer and propagate down into the ocean interior. Observational and numerical studies have shown the effects of background vorticity and high shear on propagating NIWs. However, the impacts of the background mean flow on NIWs as a function of the waves’ horizontal wavelength have yet to be fully investigated. Here, two distinct cases are analyzed, namely, the propagation of wind-generated, large-scale NIWs in negative vorticity and the behavior of small-scale NIWs in high shear. The propagation and energetics of the respective NIWs are investigated using a realistic eddy-resolving numerical simulation of the Kuroshio region. The large-scale NIWs display a rapid vertical propagation to depth in negative vorticity areas, while the small-scale NIWs are confined to shallower depths in high-shear regions. Furthermore, the dominant energy sources and sinks of near-inertial energy are estimated as the respective NIWs propagate into the ocean’s interior. The qualitative analysis of NIW energetics reveals that the wind triggers the generation of both the large-scale and small-scale NIWs, but the waves experience further amplification as they draw energy from the background mean flow upon propagation in negative vorticity and high-shear regions, respectively. In addition, the study demonstrates that small-scale NIWs can be induced independently by wind fluctuations and do not necessarily rely on straining nor refraction of large-scale NIWs by mesoscale motions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jemima Rama, jemima.rama@anu.edu.au

Abstract

Wind-generated near-inertial internal waves (NIWs) are triggered in the mixed layer and propagate down into the ocean interior. Observational and numerical studies have shown the effects of background vorticity and high shear on propagating NIWs. However, the impacts of the background mean flow on NIWs as a function of the waves’ horizontal wavelength have yet to be fully investigated. Here, two distinct cases are analyzed, namely, the propagation of wind-generated, large-scale NIWs in negative vorticity and the behavior of small-scale NIWs in high shear. The propagation and energetics of the respective NIWs are investigated using a realistic eddy-resolving numerical simulation of the Kuroshio region. The large-scale NIWs display a rapid vertical propagation to depth in negative vorticity areas, while the small-scale NIWs are confined to shallower depths in high-shear regions. Furthermore, the dominant energy sources and sinks of near-inertial energy are estimated as the respective NIWs propagate into the ocean’s interior. The qualitative analysis of NIW energetics reveals that the wind triggers the generation of both the large-scale and small-scale NIWs, but the waves experience further amplification as they draw energy from the background mean flow upon propagation in negative vorticity and high-shear regions, respectively. In addition, the study demonstrates that small-scale NIWs can be induced independently by wind fluctuations and do not necessarily rely on straining nor refraction of large-scale NIWs by mesoscale motions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jemima Rama, jemima.rama@anu.edu.au
Save