• Abernathey, R. P., I. Cerovečki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, P. M., and T. J. McDougall, 2017: Stabilizing hydrographic profiles with minimal change to the water masses. J. Atmos. Oceanic Technol., 34, 19351945, https://doi.org/10.1175/JTECH-D-16-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bostock, H. C., P. J. Sutton, M. J. M. Williams, and B. N. Opdyke, 2013: Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories. Deep-Sea Res. I, 73, 8498, https://doi.org/10.1016/j.dsr.2012.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2018: World Ocean Atlas 2018. Dataset: In-situ temperature and salinity. NOAA/NCEI, accessed 8 September 2020, https://accession.nodc.noaa.gov/NCEI-WOA18.

    • Crossref
    • Export Citation
  • Canuto, V. M., and Y. Cheng, 2019: ACC subduction by mesoscales. J. Phys. Oceanogr., 49, 32633272, https://doi.org/10.1175/JPO-D-19-0043.1.

    • Search Google Scholar
    • Export Citation
  • Carter, B. R., L. D. Talley, and A. G. Dickson, 2014: Mixing and remineralization in waters detrained from the surface into Subantarctic Mode Water and Antarctic Intermediate Water in the southeastern Pacific. J. Geophys. Res. Oceans, 119, 40014028, https://doi.org/10.1002/2013JC009355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and M. R. Mazloff, 2016: The spatiotemporal structure of diabatic processes governing the evolution of Subantarctic Mode Water in the Southern Ocean. J. Phys. Oceanogr., 46, 683710, https://doi.org/10.1175/JPO-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, M. R. Mazloff, and G. Maze, 2013: Subantarctic mode water formation, destruction, and export in the eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 43, 14851511, https://doi.org/10.1175/JPO-D-12-0121.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Close, S. E., A. C. Naveira Garabato, E. L. McDonagh, B. A. King, M. Biuw, and L. Boehme, 2013: Control of mode and intermediate water mass properties in Drake Passage by the Amundsen Sea low. J. Climate, 26, 51025123, https://doi.org/10.1175/JCLI-D-12-00346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1987: Subduction. Dynamics of the Oceanic Surface Mixed-Layer: Proc. Fourth ‘Aha Huliko‘a Hawaiian Winter Workshop, P. Müller and D. Henderson, Eds., Honolulu, HI, University of Hawai‘i at Mānoa, 181196, http://www.soest.hawaii.edu/PubServices/1987pdfs/Cushman_Roisin.pdf.

    • Crossref
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, S. M., A. Gnanadesikan, S. M. Griffies, and J. L. Sarmiento, 2011: Water mass exchange in the Southern Ocean in coupled climate models. J. Phys. Oceanogr., 41, 17561771, https://doi.org/10.1175/2011JPO4586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., J. S. Godfrey, A. C. Hirst, and M. Tomczak, 1993: The mechanism for Antarctic Intermediate Water renewal in a World Ocean model. J. Phys. Oceanogr., 23, 15531560, https://doi.org/10.1175/1520-0485(1993)023<1553:TMFAIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. G., J. D. Zika, A. C. Naveira Garabato, and A. J. G. Nurser, 2014: The imprint of Southern Ocean overturning on seasonal water mass variability in Drake Passage. J. Geophys. Res. Oceans, 119, 79878010, https://doi.org/10.1002/2014JC010097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. G., J. D. Zika, A. C. Naveira Garabato, and A. J. G. Nurser, 2018: The cold transit of Southern Ocean upwelling. Geophys. Res. Lett., 45, 13 38613 395, https://doi.org/10.1029/2018GL079986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the southern ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, https://doi.org/10.1175/JPO-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., and D. Iudicone, 2018: The effect of air-sea flux products, shortwave radiation depth penetration, and albedo on the upper ocean overturning circulation. Geophys. Res. Lett., 45, 90879097, https://doi.org/10.1029/2018GL078442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., R. P. Abernathey, and A. Klocker, 2016: Water mass transformation by cabbeling and thermobaricity. Geophys. Res. Lett., 43, 10 83510 845, https://doi.org/10.1002/2016GL070860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., B. M. Sloyan, J. D. Zika, and T. J. McDougall, 2017: Mixing inferred from an ocean climatology and surface fluxes. J. Phys. Oceanogr., 47, 667687, https://doi.org/10.1175/JPO-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., P. M. Barker, T. J. McDougall, R. P. Abernathey, and S. Griffies, 2019a: VENM: An algorithm to accurately calculate neutral slopes and gradients. J. Adv. Model. Earth Syst., 11, 19171939, https://doi.org/10.1029/2019MS001613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., S. Griffies, D. Iudicone, R. Marsh, G. Nurser, and J. Zika, 2019b: The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci., 11, 271305, https://doi.org/10.1146/annurev-marine-010318-095421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. H. LaCasce, T. J. McDougall, and M. Rogé, 2020: Full-depth global estimates of ocean mesoscale eddy mixing from observations and theory. Geophys. Res. Lett., 47, e2020GL089425, https://doi.org/10.1029/2020GL089425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, https://doi.org/10.1029/2008GB003349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 103, Academic Press, 373386.

    • Crossref
    • Export Citation
  • Herraiz-Borreguero, L., and S. Rintoul, 2011: Subantarctic mode water: Distribution and circulation. Ocean Dyn., 61, 103126, https://doi.org/10.1007/s10236-010-0352-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiraike, Y., Y. Tanaka, and H. Hasumi, 2016: Subduction of Pacific Antarctic intermediate water in an eddy-resolving model. J. Geophys. Res. Oceans, 121, 133147, https://doi.org/10.1002/2015JC010802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holte, J. W., L. D. Talley, T. K. Chereskin, and B. M. Sloyan, 2013: Subantarctic mode water in the southeast Pacific: Effect of exchange across the Subantarctic Front. J. Geophys. Res. Ocean, 118, 20522066, https://doi.org/10.1002/jgrc.20144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: T The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, UNESCO, 196 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

    • Crossref
    • Export Citation
  • Iudicone, D., K. B. Rodgers, R. Schopp, and G. Madec, 2007: An exchange window for the injection of Antarctic Intermediate Water into the South Pacific. J. Phys. Oceanogr., 37, 3149, https://doi.org/10.1175/JPO2985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008a: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, https://doi.org/10.1175/2007JPO3464.1.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., S. Speich, G. Madec, and B. Blanke, 2008b: The global conveyor belt from a Southern Ocean perspective. J. Phys. Oceanogr., 38, 14011425, https://doi.org/10.1175/2007JPO3525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., K. B. Rodgers, I. Stendardo, O. Aumont, G. Madec, L. Bopp, O. Mangoni, and M. Ribera d’Alcala’, 2011: Water masses as a unifying framework for understanding the Southern Ocean carbon cycle. Biogeosciences, 8, 10311052, https://doi.org/10.5194/bg-8-1031-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, K., B. M. Sloyan, and S. Masuda, 2013: Diapycnal and isopycnal transports in the Southern Ocean estimated by a box inverse model. J. Phys. Oceanogr., 43, 22702287, https://doi.org/10.1175/JPO-D-12-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, E. Y., 2013: Temporal variability of transformation, formation, and subduction rates of upper Southern Ocean waters. J. Geophys. Res. Oceans, 118, 62856302, https://doi.org/10.1002/2013JC008823.

    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface, IPRC Tech. Note 4(2), 16 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612small.pdf.

  • Li, Z., M. H. England, S. Groeskamp, I. Cerovečki, and Y. Luo, 2021: The origin and fate of subantarctic mode water in the southern ocean. J. Phys. Oceanogr., 51, 29512972, https://doi.org/10.1175/JPO-D-20-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Cabbeling due to isopycnal mixing in isopycnic coordinate models. J. Phys. Oceanogr., 30, 17571775, https://doi.org/10.1175/1520-0485(2000)030<1757:CDTIMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., A. J. G. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr., 30, 10131045, https://doi.org/10.1175/1520-0485(2000)030<1013:WMTITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., R. G. Williams, and A. J. G. Nurser, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23, 13151329, https://doi.org/10.1175/1520-0485(1993)023<1315:ITSRAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, https://doi.org/10.1016/S0967-0637(98)00082-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic mode water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon Press, 103119.

    • Crossref
    • Export Citation
  • McCartney, M. S., 1982: The subtropical recirculation of Mode Water. J. Mar. Res., 40, 427464.

  • McDougall, T. J., 1984: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion. J. Phys. Oceanogr., 14, 15771589, https://doi.org/10.1175/1520-0485(1984)014<1577:TRRODA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92, 54485464, https://doi.org/10.1029/JC092iC05p05448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, https://doi.org/10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and A. Klocker, 2010: An approximate geostrophic streamfunction for use in density surfaces. Ocean Modell., 32, 105117, https://doi.org/10.1016/j.ocemod.2009.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., https://www.teos-10.org/pubs/Getting_Started.pdf.

    • Crossref
    • Export Citation
  • McDougall, T. J., D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker, 2012: A global algorithm for estimating Absolute Salinity. Ocean Sci., 8, 11231134, https://doi.org/10.5194/os-8-1123-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, A., B. M. Sloyan, K. L. Polzin, H. E. Phillips, and N. L. Bindoff, 2015: Mixing variability in the Southern Ocean. J. Phys. Oceanogr., 45, 966987, https://doi.org/10.1175/JPO-D-14-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison A. K., D. W. Waugh, A. M. Hogg, D. C. Jones, and R. P. Abernathey, 2021: Ventilation of the southern ocean pycnocline. Annu. Rev. Mar. Sci., 14, 405430, https://doi.org/10.1146/annurev-marine-010419-011012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., L. Jullion, D. P. Stephens, K. J. Heywood, and B. A. King, 2009: Variability of Subantarctic Mode Water and Antarctic Intermediate Water in Drake Passage during the late-twentieth and early-twenty-first centuries. J. Climate, 22, 36613688, https://doi.org/10.1175/2009JCLI2621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29, 14681487, https://doi.org/10.1175/1520-0485(1999)029<1468:DWMFFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., M. Hieronymus, and F. Roquet, 2015: The nonlinear equation of state of sea water and the global water mass distribution. Geophys. Res. Lett., 42, 77147721, https://doi.org/10.1002/2015GL065525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portela, E., N. Kolodziejczyk, C. Maes, and V. Thierry, 2020: Interior water-mass variability in the Southern Hemisphere oceans during the last decade. J. Phys. Oceanogr., 50, 361381, https://doi.org/10.1175/JPO-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25, 23742390, https://doi.org/10.1175/1520-0485(1995)025<2374:VOTNAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., and J. R. Dunn, 2007: Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett., 34, L13612, https://doi.org/10.1029/2007GL030392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32, 13081321, https://doi.org/10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., and S. R. Rintoul, 2011: Parameterization of eddy-induced subduction in the Southern Ocean surface layer. Ocean Modell., 39, 146153, https://doi.org/10.1016/j.ocemod.2011.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, S. R. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., and M. England, 2004: Antarctic Intermediate Water circulation and variability using a coupled climate model. J. Phys. Oceanogr., 34, 21602179, https://doi.org/10.1175/1520-0485(2004)034<2160:AIWCAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., L. D. Talley, T. Chereskin, R. Fine, and J. Holte, 2010: Antarctic intermediate water and subantarctic mode water formation in the southeast Pacific: The role of turbulent mixing. J. Phys. Oceanogr., 40, 15581574, https://doi.org/10.1175/2010JPO4114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res., 114, C11018, https://doi.org/10.1029/2008JC005108.

    • Search Google Scholar
    • Export Citation
  • Sørensen, J. V. T., J. Ribbe, and G. Shaffer, 2001: Antarctic intermediate water mass formation in ocean general circulation models. J. Phys. Oceanogr., 31, 32953311, https://doi.org/10.1175/1520-0485(2001)031<3295:AIWMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1996: Antarctic intermediate water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer, 219238.

  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226, https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Urakawa, L. S., and H. Hasumi, 2012: Eddy-resolving model estimate of the cabbeling effect on the water mass transformation in the Southern Ocean. J. Phys. Oceanogr., 42, 12881302, https://doi.org/10.1175/JPO-D-11-0173.1.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheenet, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., 1991: The role of the mixed layer in setting the potential vorticity of the main thermocline. J. Phys. Oceanogr., 21, 18031814, https://doi.org/10.1175/1520-0485(1991)021<1803:TROTML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 826 826 54
Full Text Views 250 250 20
PDF Downloads 326 326 24

The Origin and Fate of Antarctic Intermediate Water in the Southern Ocean

Zhi LiaClimate Change Research Centre, University of New South Wales, New South Wales, Australia
bAustralian Centre for Excellence in Antarctic Science, University of New South Wales, New South Wales, Australia

Search for other papers by Zhi Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0166-9289
,
Sjoerd GroeskampcDepartment of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, Netherlands

Search for other papers by Sjoerd Groeskamp in
Current site
Google Scholar
PubMed
Close
,
Ivana CerovečkidScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ivana Cerovečki in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. EnglandaClimate Change Research Centre, University of New South Wales, New South Wales, Australia
bAustralian Centre for Excellence in Antarctic Science, University of New South Wales, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using observationally based hydrographic and eddy diffusivity datasets, a volume budget analysis is performed to identify the main mechanisms governing the spatial and seasonal variability of Antarctic Intermediate Water (AAIW) within the density range γn = (27.25–27.7) kg m−3 in the Southern Ocean. The subduction rates and water mass transformation rates by mesoscale and small-scale turbulent mixing are estimated. First, Ekman pumping upwells the dense variety of AAIW into the mixed layer south of the Polar Front, which can be advected northward by Ekman transport into the subduction regions of lighter-variety AAIW and Subantarctic Mode Water (SAMW). The subduction of light AAIW occurs mainly by lateral advection in the southeast Pacific and Drake Passage as well as eddy-induced flow between the Subantarctic and Polar Fronts. The circumpolar-integrated total subduction yields from −5 to 19 Sv (1 Sv ≡ 106 m3 s−1) of AAIW volume loss. Second, the diapycnal transport from subducted SAMW into the AAIW layer is predominantly by mesoscale mixing (2–13 Sv) near the Subantarctic Front and vertical mixing in the South Pacific, while AAIW is further replenished by transformation from Upper Circumpolar Deep Water by vertical mixing (1–10 Sv). Last, 3–14 Sv of AAIW are exported out of the Southern Ocean. Our results suggest that the distribution of AAIW is set by its formation due to subduction and mixing, and its circulation eastward along the ACC and northward into the subtropical gyres. The volume budget analysis reveals strong seasonal variability in the rate of subduction, vertical mixing, and volume transport driving volume change within the AAIW layer. The nonzero volume budget residual suggests that more observations are needed to better constrain the estimate of geostrophic flow and mesoscale and small-scale mixing diffusivities.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhi Li, zhi.li4@unsw.edu.au

Abstract

Using observationally based hydrographic and eddy diffusivity datasets, a volume budget analysis is performed to identify the main mechanisms governing the spatial and seasonal variability of Antarctic Intermediate Water (AAIW) within the density range γn = (27.25–27.7) kg m−3 in the Southern Ocean. The subduction rates and water mass transformation rates by mesoscale and small-scale turbulent mixing are estimated. First, Ekman pumping upwells the dense variety of AAIW into the mixed layer south of the Polar Front, which can be advected northward by Ekman transport into the subduction regions of lighter-variety AAIW and Subantarctic Mode Water (SAMW). The subduction of light AAIW occurs mainly by lateral advection in the southeast Pacific and Drake Passage as well as eddy-induced flow between the Subantarctic and Polar Fronts. The circumpolar-integrated total subduction yields from −5 to 19 Sv (1 Sv ≡ 106 m3 s−1) of AAIW volume loss. Second, the diapycnal transport from subducted SAMW into the AAIW layer is predominantly by mesoscale mixing (2–13 Sv) near the Subantarctic Front and vertical mixing in the South Pacific, while AAIW is further replenished by transformation from Upper Circumpolar Deep Water by vertical mixing (1–10 Sv). Last, 3–14 Sv of AAIW are exported out of the Southern Ocean. Our results suggest that the distribution of AAIW is set by its formation due to subduction and mixing, and its circulation eastward along the ACC and northward into the subtropical gyres. The volume budget analysis reveals strong seasonal variability in the rate of subduction, vertical mixing, and volume transport driving volume change within the AAIW layer. The nonzero volume budget residual suggests that more observations are needed to better constrain the estimate of geostrophic flow and mesoscale and small-scale mixing diffusivities.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhi Li, zhi.li4@unsw.edu.au
Save