• Ascani, F., E. Firing, P. Dutrieux, J. P. McCreary, and A. Ishida, 2010: Deep equatorial ocean circulation induced by a forced-dissipated Yanai beam. J. Phys. Oceanogr., 40, 11181142, https://doi.org/10.1175/2010JPO4356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ascani, F., E. Firing, J. P. McCreary, P. Brandt, and R. J. Greatbatch, 2015: The deep equatorial ocean circulation in wind-forced numerical solutions. J. Phys. Oceanogr., 45, 17091734, https://doi.org/10.1175/JPO-D-14-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2011: Structural stability theory of two-dimensional fluid flow under stochastic forcing. J. Fluid Mech., 682, 332361, https://doi.org/10.1017/jfm.2011.228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2013: Emergence of large scale structure in barotropic β-plane turbulence. Phys. Rev. Lett., 110, 224501, https://doi.org/10.1103/PhysRevLett.110.224501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., N. C. Constantinou, and P. J. Ioannou, 2015: S3T stability of the homogeneous state of barotropic beta-plane turbulence. J. Atmos. Sci., 72, 16891712, https://doi.org/10.1175/JAS-D-14-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., P. B. Rhines, H.-P. Huang, and M. E. McIntyre, 2007: The jet‐stream conundrum. Science, 315, 467468, https://doi.org/10.1126/science.1131375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belmadani, A., N. A. Maximenko, J. P. McCreary, R. Furue, O. V. Melnichenko, N. Schneider, and E. Di Lorenzo, 2013: Linear wind-forced beta plumes with application to the Hawaiian Lee Countercurrent. J. Phys. Oceanogr., 43, 2071–2094, https://doi.org/10.1175/JPO-D-12-0194.1.

    • Crossref
    • Export Citation
  • Berloff, P., and I. Kamenkovich, 2013: On spectral analysis of mesoscale eddies. Part I: Linear analysis. J. Phys. Oceanogr., 43, 25052527, https://doi.org/10.1175/JPO-D-12-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 27112734, https://doi.org/10.1175/2009JPO4093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, https://doi.org/10.1017/S0022112009006375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, T. Zu, X. Chu, and J. Chen, 2022: The deep‐penetrating south equatorial undercurrent in the tropical South Indian Ocean. Geophys. Res. Lett., 49, e2022GL098163, https://doi.org/10.1029/2022GL098163.

    • Crossref
    • Export Citation
  • Constantinou, N. C., B. F. Farrell, and P. J. Ioannou, 2014: Emergence and equilibration of jets in beta-plane turbulence: Applications of stochastic structural stability theory. J. Atmos. Sci., 71, 18181842, https://doi.org/10.1175/JAS-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., W. S. Kessler, and F. Marin, 2012: Intermediate zonal jets in the tropical Pacific ocean observed by Argo floats. J. Phys. Oceanogr., 42, 14751485, https://doi.org/10.1175/JPO-D-11-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., E. Kestenare, F. Marin, P. Dutrieux, and E. Firing, 2017: Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: Paths and vertical structure. J. Phys. Oceanogr., 47, 23052324, https://doi.org/10.1175/JPO-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Divakaran, P., and G. B. Brassington, 2011: Arterial ocean circulation of the southeast Indian Ocean. Geophys. Res. Lett., 38, L01802, https://doi.org/10.1029/2010GL045574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, K. Hu, and G. Huang, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2003: Structural stability of turbulent jets. J. Atmos. Sci., 60, 21012118, https://doi.org/10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64, 36523665, https://doi.org/10.1175/JAS4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, and T. Lee, 2010: Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys. Res. Lett., 37, L09606, https://doi.org/10.1029/2010GL042796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., and P. L. Read, 2019: Zonal Jets Phenomenology, Genesis, and Physics. Cambridge University Press, 46 pp.

    • Crossref
    • Export Citation
  • Galperin, B., H. Nakano, H. P. Huang, and S. Sukoriansky, 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31, L13303, https://doi.org/10.1029/2004GL019691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, K. E., D. Wang, W. Han, M. Feng, and L. I. Jian, 2019: Semiannual variability of mid–depth zonal currents along 5°N in the eastern Indian Ocean: Characteristics and causes. J. Phys. Oceanogr., 49, 27152729, https://doi.org/10.1175/JPO-D-19-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, J. Lan, and B. Qiu, 2011a: Interannual modulation of eddy kinetic energy in the southeast Indian Ocean by Southern Annular Mode. J. Geophys. Res., 116, C02029, https://doi.org/10.1029/2010JC006699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, and B. Qiu, 2011b: Seasonal modulation of eddy kinetic energy and its formation mechanism in the southeast Indian Ocean. J. Phys. Oceanogr., 41, 657665, https://doi.org/10.1175/2010JPO4436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and L. Gourdeau, 2006: Wind-driven zonal jets in the South Pacific Ocean. Geophys. Res. Lett., 33, L03608, https://doi.org/10.1029/2005GL025084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., H. Mitsudera, and S.-P. Xie, 2006: Three subtropical fronts in the North Pacific: Observational evidence for mode water induced subsurface frontogenesis. J. Geophys. Res., 111, C09033, https://doi.org/10.1029/2006JC003479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, https://doi.org/10.1029/2005GL022728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, https://doi.org/10.1029/2008GL033267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, N. L. Bindoff, C. M. Domingues, and M. L. Vianna, 2014: South Indian Countercurrent and associated fronts. J. Geophys. Res. Oceans, 119, 6763–6791, https://doi.org/10.1002/2014JC010076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2018: The shallow overturning circulation in the Indian Ocean. J. Phys. Oceanogr., 48, 413434, https://doi.org/10.1175/JPO-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and J.-P. Rannou, 2013: ANDRO: An Argo-based deep displacement dataset. J. Atmos. Oceanic Technol., 30, 759788, https://doi.org/10.1175/JTECH-D-12-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. C. de Verdiere, 2014: The ocean general circulation near 1000-m depth. J. Phys. Oceanogr., 44, 384–409, https://doi.org/10.1175/JPO-D-13-030.1.

    • Crossref
    • Export Citation
  • Park, J. J., K. Kim, and W. R. Crawford, 2004: Inertial currents estimated from surface trajectories of ARGO floats. Geophys. Res. Lett., 31, L13307, https://doi.org/10.1029/2004GL020191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, B. A. King, and S. C. Riser, 2005: An advanced method to estimate deep currents from profiling floats. J. Atmos. Oceanic Technol., 22, 12941304, https://doi.org/10.1175/JTECH1748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, J. B., and J. A. Krommes, 2013: Zonal flow as pattern formation. Phys. Plasmas, 20, 100703, https://doi.org/10.1063/1.4828717.

  • Parker, J. B., and J. A. Krommes, 2014: Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys., 16, 035006, https://doi.org/10.1088/1367-2630/16/3/035006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Potemra, J. T., 2001: Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106, 24072422, https://doi.org/10.1029/1999JC000031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/POSEIDON observations and theory. J. Phys. Oceanogr., 29, 24712486, https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Hacker, N. Hogg, S. Jayne, and H. Sasaki, 2008: The Kuroshio Extension northern recirculation gyre: Profiling float measurements and forcing mechanism. J. Phys. Oceanogr., 38, 17641779, https://doi.org/10.1175/2008JPO3921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and H. Sasaki, 2013: Generation of the North Equatorial Undercurrent jets by triad baroclinic Rossby wave interactions. J. Phys. Oceanogr., 43, 26822698, https://doi.org/10.1175/JPO-D-13-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and D. L. Rudnick, 2015: A new paradigm for the North Pacific subthermocline low-latitude western boundary current system. J. Phys. Oceanogr., 45, 24072423, https://doi.org/10.1175/JPO-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Rhines, P. B., and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289325, https://doi.org/10.1016/0377-0265(79)90015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, K. J., N. A. Maximenko, F. O. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, L03605, https://doi.org/10.1029/2005GL024645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, G. D., E. Firing, and G. C. Johnson, 2000: Pacific equatorial subsurface countercurrent velocity, transport, and potential vorticity. J. Phys. Oceanogr., 30, 11721187, https://doi.org/10.1175/1520-0485(2000)030<1172:PESCVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 157–186.

    • Crossref
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, https://doi.org/10.1175/JAS-D-11-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, B., R. Furue, N. Komori, A. Kuwano Yoshida, M. Nonaka, H. Sasaki, and W. Ohfuchi, 2012: Deep oceanic zonal jets constrained by fine-scale wind stress curls in the South Pacific Ocean: A high-resolution coupled GCM study. Geophys. Res. Lett., 39, L08602, https://doi.org/10.1029/2012GL051248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobias, S. M., and J. B. Marston, 2013: Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett., 110, 104502, https://doi.org/10.1103/PhysRevLett.110.104502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 770 pp.

    • Crossref
    • Export Citation
  • van Sebille, E. V., I. Kamenkovich, and J. K. Willis, 2011: Quasi‐zonal jets in 3‐D Argo data of the northeast Atlantic. Geophys. Res. Lett., 38, L02606, https://doi.org/10.1029/2010GL046267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., M. A. Spall, G. R. Flierl, and P. Malanotte-Rizzoli, 2012: A new mechanism for the generation of quasi-zonal jets in the ocean. Geophys. Res. Lett., 39, L10601, https://doi.org/10.1029/2012GL051861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian throughflow region. J. Phys. Oceanogr., 34, 12321253, https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Y. Du, B. Qiu, X. Cheng, T. Wang, and Q. Xie, 2020: The characteristics of the mid-depth striations in the North Indian Ocean. Deep-Sea Res., 162, 103307, https://doi.org/10.1016/j.dsr.2020.103307.

    • Search Google Scholar
    • Export Citation
  • Xie, J., and J. Zhu, 2008: Estimation of the surface and mid-depth currents from Argo floats in the Pacific and error analysis. J. Mar. Syst., 73, 6175, https://doi.org/10.1016/j.jmarsys.2007.09.001.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., H. Zhou, and X. Zhao, 2013: Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian Throughflow. J. Climate, 26, 28452861, https://doi.org/10.1175/JCLI-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Zanowski, H., and G. C. Johnson, 2019: Semiannual variations in 1,000‐dbar equatorial Indian Ocean velocity and isotherm displacements from Argo data. J. Geophys. Res. Oceans, 124, 95079516, https://doi.org/10.1029/2019JC015342.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. P. Guan, and R. X. Huang, 2021: 3D structure of striations in the North Pacific. J. Phys. Oceanogr., 51, 36513662, https://doi.org/10.1175/JPO-D-21-0076.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 393 393 27
Full Text Views 112 112 9
PDF Downloads 150 150 8

Middepth Zonal Velocity in the Southern Tropical Indian Ocean: Striation-Like Structures and Their Dynamics

Yifan XiaaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Yifan Xia in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7842-0801
and
Yan DuaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
bSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yan Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the upper-ocean absolute geostrophic currents in the southern Indian Ocean are constructed using Argo temperature and salinity data from the middepth (1000 m) zonal velocity derived from the Argo float trajectory. The results reveal alternating quasi-zonal striation-like structures of middepth zonal velocity in the equatorial and southern tropical Indian Ocean. Specifically, the eastward time-mean flows are located at the equator and 2°, 5°, 8°, 13°, 16°, 18°–19°, and 21°–22°S, with a meridional scale of ∼300 km. The generation mechanisms of the striation-like zonal velocity structure differ between the near-equatorial and off-equatorial regions. The triad of baroclinic Rossby wave instability plays a significant role in near-equatorial striations. In the south, the high potential vorticity (PV) of Antarctic intermediate water and low PV of southern Indian Ocean Subantarctic Mode Water lead to strong baroclinic instability, which increases the eddy kinetic energy in the middepth layer, thus contributing to a turbulent PV gradient. The convergence/divergence of the eddy PV flux generates the quasi-zonal striations. The meridional scale of the striations is controlled by the most unstable wavelength of baroclinic instability, which explains the observations.

Significance Statement

The middepth zonal velocity resembles a system of eastward/westward jets with a considerably smaller width than the larger-scale ocean surface circulation. Such a phenomenon always occurs in a turbulent ocean that presents eddy or eddy–mean flow interactions. This study used float observations to reveal a robust middepth zonal velocity in the southern tropical Indian Ocean, where the width of the eastward time-mean flows is approximately 300 km. Smaller eddies drive the zonal currents with a smaller width, and the energy of the eddies is released from the unstable vertical structure at middepths. This study provides new insights into the generation mechanism of small-width zonal current structures in the deep ocean.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Abstract

In this study, the upper-ocean absolute geostrophic currents in the southern Indian Ocean are constructed using Argo temperature and salinity data from the middepth (1000 m) zonal velocity derived from the Argo float trajectory. The results reveal alternating quasi-zonal striation-like structures of middepth zonal velocity in the equatorial and southern tropical Indian Ocean. Specifically, the eastward time-mean flows are located at the equator and 2°, 5°, 8°, 13°, 16°, 18°–19°, and 21°–22°S, with a meridional scale of ∼300 km. The generation mechanisms of the striation-like zonal velocity structure differ between the near-equatorial and off-equatorial regions. The triad of baroclinic Rossby wave instability plays a significant role in near-equatorial striations. In the south, the high potential vorticity (PV) of Antarctic intermediate water and low PV of southern Indian Ocean Subantarctic Mode Water lead to strong baroclinic instability, which increases the eddy kinetic energy in the middepth layer, thus contributing to a turbulent PV gradient. The convergence/divergence of the eddy PV flux generates the quasi-zonal striations. The meridional scale of the striations is controlled by the most unstable wavelength of baroclinic instability, which explains the observations.

Significance Statement

The middepth zonal velocity resembles a system of eastward/westward jets with a considerably smaller width than the larger-scale ocean surface circulation. Such a phenomenon always occurs in a turbulent ocean that presents eddy or eddy–mean flow interactions. This study used float observations to reveal a robust middepth zonal velocity in the southern tropical Indian Ocean, where the width of the eastward time-mean flows is approximately 300 km. Smaller eddies drive the zonal currents with a smaller width, and the energy of the eddies is released from the unstable vertical structure at middepths. This study provides new insights into the generation mechanism of small-width zonal current structures in the deep ocean.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn
Save