• Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., 1988: A numerical study on the influence of the mid-Atlantic ridge on nonlinear first-mode baroclinic Rossby waves generated by seasonal winds. J. Phys. Oceanogr., 18, 417433, https://doi.org/10.1175/1520-0485(1988)018<0417:ANSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benilov, E. S., 2001: Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr., 31, 20192025, https://doi.org/10.1175/1520-0485(2001)031<2019:BIOTLF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bickley, W. G., 1937: LXXIII. The plane jet. London Edinburgh Dublin Philos. Mag. J. Sci., 23, 727731, https://doi.org/10.1080/14786443708561847.

    • Search Google Scholar
    • Export Citation
  • Blumsack, S. L., and P. J. Gierasch, 1972: Mars: The effects of topography on baroclinic instability. J. Atmos. Sci., 29, 10811089, https://doi.org/10.1175/1520-0469(1972)029<1081:MTEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and J. Pedlosky, 2020: The structure of baroclinic modes in the presence of baroclinic mean flow. J. Phys. Oceanogr., 50, 239253, https://doi.org/10.1175/JPO-D-19-0123.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and G. R. Flierl, 1981: Oceanic analogues of large-scale atmospheric motions. Evolution of Physical Oceanography, C. Wunsch and B. Warren, Eds., MIT Press, 504548.

  • Chen, C., and I. Kamenkovich, 2013: Effects of topography on baroclinic instability. J. Phys. Oceanogr., 43, 790804, https://doi.org/10.1175/JPO-D-12-0145.1.

    • Search Google Scholar
    • Export Citation
  • Chen, C., I. Kamenkovich, and P. Berloff, 2015: On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr., 45, 927940, https://doi.org/10.1175/JPO-D-14-0143.1.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., 2015: Formation of large-scale structures by turbulence in rotating planets. Ph.D. thesis, National and Kapodistrian University of Athens, Athens, 190 pp., http://www.didaktorika.gr/eadd/handle/10442/35501?locale=en.

  • Constantinou, N. C., and G. L. Wagner, 2021: FourierFlows.jl: Version 0.8.0. Zenodo, https://doi.org/10.5281/zenodo.5745869.

  • Constantinou, N. C., G. L. Wagner, L. Siegelman, B. C. Pearson, and A. Palóczy, 2021: GeophysicalFlows.jl: Solvers for geophysical fluid dynamics problems in periodic domains on CPUs & GPUs. J. Open Source Software, 6, 3053, https://doi.org/10.21105/joss.03053.

    • Search Google Scholar
    • Export Citation
  • Davies, J., H. Khatri, and P. Berloff, 2021: Linear stability analysis for flows over sinusoidal bottom topography. J. Fluid Mech., 911, A33, https://doi.org/10.1017/jfm.2020.1082.

    • Search Google Scholar
    • Export Citation
  • de La Lama, M. S., J. H. LaCasce, and H. K. Fuhr, 2016: The vertical structure of ocean eddies. Dyn. Stat. Climate Syst., 1, dzw001, https://doi.org/10.1093/climsys/dzw001.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Evans, D. G., E. Frajka-Williams, and A. C. Naveira Garabato, 2022: Dissipation of mesoscale eddies at a western boundary via a direct energy cascade. Sci. Rep., 12, 887, https://doi.org/10.1038/s41598-022-05002-7.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., P. Malanotte-Rizzoli, and N. J. Zabusky, 1987: Nonlinear waves and coherent vortex structures in barotropic V-plane jets. J. Phys. Oceanogr., 17, 14081438, https://doi.org/10.1175/1520-0485(1987)017<1408:NWACVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., X. Yu, J. Callies, R. Barkan, K. L. Polzin, E. E. Frajka-Williams, C. E. Buckingham, and S. M. Griffies, 2022: Kinetic energy transfers between mesoscale and sub-mesoscale motions in the open ocean’s upper layers. J. Phys. Oceanogr., 52, 7597, https://doi.org/10.1175/JPO-D-21-0099.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A., J. Green, and A. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499528, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., 2010: Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res. Solid Earth, 115, B12104, https://doi.org/10.1029/2010JB007867.

  • Goff, J. A., 2020: Identifying characteristic and anomalous mantle from the complex relationship between abyssal hill roughness and spreading rates. Geophys. Res. Lett., 47, e2020GL088162, https://doi.org/10.1029/2020GL088162.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1989: Stochastic modeling of seafloor morphology: A parameterized Gaussian model. Geophys. Res. Lett., 16, 4548, https://doi.org/10.1029/GL016i001p00045.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and B. K. Arbic, 2010: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Modell., 32, 3643, https://doi.org/10.1016/j.ocemod.2009.10.001.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 14941497, https://doi.org/10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and D. G. Andrews, 1983: On the direction of the eddy momentum flux in baroclinic instability. J. Atmos. Sci., 40, 22202231, https://doi.org/10.1175/1520-0469(1983)040<2220:OTDOTE>2.0.CO;2.

  • Isachsen, P. E., 2011: Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modell., 39, 183199, https://doi.org/10.1016/j.ocemod.2010.09.007.

    • Search Google Scholar
    • Export Citation
  • Khatri, H., and P. Berloff, 2018: A mechanism for jet drift over topography. J. Fluid Mech., 845, 392416, https://doi.org/10.1017/jfm.2018.260.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1980: Barotropic and baroclinic instability in rotating stratified fluids. Dyn. Atmos. Oceans, 4, 143184, https://doi.org/10.1016/0377-0265(80)90013-5.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-l., 1949: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Atmos. Sci., 6, 105122, https://doi.org/10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2.

  • LaCasce, J. H., 1998: A geostrophic vortex over a slope. J. Phys. Oceanogr., 28, 23622381, https://doi.org/10.1175/1520-0485(1998)028<2362:AGVOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and K. H. Brink, 2000: Geostrophic turbulence over a slope. J. Phys. Oceanogr., 30, 13051324, https://doi.org/10.1175/1520-0485(2000)030<1305:GTOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and S. Groeskamp, 2020: Baroclinic modes over rough bathymetry and the surface deformation radius. J. Phys. Oceanogr., 50, 28352847, https://doi.org/10.1175/JPO-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., J. Escartin, E. P. Chassignet, and X. Xu, 2019: Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr., 49, 585605, https://doi.org/10.1175/JPO-D-18-0129.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., M. Roughan, and C. Kerry, 2021: Dynamics of interannual eddy kinetic energy modulations in a western boundary current. Geophys. Res. Lett., 48, e2021GL094115, https://doi.org/10.1029/2021GL094115.

    • Search Google Scholar
    • Export Citation
  • Mak, M., and M. Cai, 1989: Local barotropic instability. J. Atmos. Sci., 46, 32893311, https://doi.org/10.1175/1520-0469(1989)046<3289:LBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maslowe, S., 1981: Shear flow instabilities and transition. Hydrodynamic Instabilities and the Transition to Turbulence, H. L. Swinney and J. P. Gollub, Eds., Springer, 181228, https://doi.org/10.1007/3-540-13319-4_17..

  • Melet, A. V., R. Hallberg, and D. P. Marshall, 2022: The role of ocean mixing in the climate system. Ocean Mixing, M. Meredith and A. Naveira Garabato, Eds., Elsevier, 534, https://doi.org/10.1016/B978-0-12-821512-8.00009-8.

  • Mysak, L. A., and F. Schott, 1977: Evidence for baroclinic instability of the Norwegian current. J. Geophys. Res., 82, 20872095, https://doi.org/10.1029/JC082i015p02087.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Owens, W. B., and F. P. Bretherton, 1978: A numerical study of mid-ocean mesoscale eddies. Deep-Sea Res., 25, 114, https://doi.org/10.1016/S0146-6291(21)00002-3.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 274286, https://doi.org/10.3402/tellusa.v6i3.8734.

    • Search Google Scholar
    • Export Citation
  • Poulin, F. J., and G. R. Flierl, 2003: The nonlinear evolution of barotropically unstable jets. J. Phys. Oceanogr., 33, 21732192, https://doi.org/10.1175/1520-0485(2003)033<2173:TNEOBU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poulin, F. J., and G. R. Flierl, 2005: The influence of topography on the stability of jets. J. Phys. Oceanogr., 35, 811825, https://doi.org/10.1175/JPO2719.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2020: Control of baroclinic instability by submesoscale topography. J. Fluid Mech., 882, A14, https://doi.org/10.1017/jfm.2019.826.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. J. Phys. Oceanogr., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1977: The dynamics of unsteady currents. Marine Modeling, E. D. Goldberg et al., Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, John Wiley and Sons, 189318.

  • Rocha, C. B., G. L. Wagner, and W. R. Young, 2018: Stimulated generation: Extraction of energy from balanced flow by near-inertial waves. J. Fluid Mech., 847, 417451, https://doi.org/10.1017/jfm.2018.308.

    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., and Coauthors, 2022: Improved bathymetric prediction using geological information: SYNBATH. Earth Space Sci., 9, e2021EA002 069, https://doi.org/10.1029/2021EA002069.

  • Thomas, J., and D. Daniel, 2021: Forward flux and enhanced dissipation of geostrophic balanced energy. J. Fluid Mech., 911, A60, https://doi.org/10.1017/jfm.2020.1026.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and B. L. Hua, 1988: Influence of bottom topography on stratified quasi-geostrophic turbulence in the ocean. Geophys. Astrophys. Fluid Dyn., 43, 265305, https://doi.org/10.1080/03091928808208867.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 773 pp.

  • Vanneste, J., 2000: Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech., 407, 105122, https://doi.org/10.1017/S0022112099007430.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2003: Nonlinear dynamics over rough topography: Homogeneous and stratified quasi-geostrophic theory. J. Fluid Mech., 474, 299318, https://doi.org/10.1017/S0022112002002707.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., A. F. Thompson, A. Lazar, and K. J. Richards, 2017: ACC meanders, energy transfer, and mixed barotropic–baroclinic instability. J. Phys. Oceanogr., 47, 12911305, https://doi.org/10.1175/JPO-D-16-0160.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608612, https://doi.org/10.1038/ngeo943.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 429 429 35
Full Text Views 165 165 9
PDF Downloads 226 226 13

Instability of a Surface Jet over Rough Topography

André PalóczyaDepartment of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by André Palóczy in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8231-8298
and
J. H. LaCasceaDepartment of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by J. H. LaCasce in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The instability of a surface-trapped jet over rough bottom topography is examined using a linearized quasigeostrophic model. The jet is laterally sheared and thus susceptible to both barotropic and baroclinic instability. The relative magnitude of the two depends on the jet width and on the spectral characteristics and amplitude of the bathymetry. The most unstable eddies in the upper layer are typically smaller over bathymetry than with a flat bottom. Topography also alters momentum flux convergence in the upper layer and causes the perturbations to resemble eddies in a 1.5-layer flow. But as long as the jet is wider than the deformation radius, baroclinic instability is present, yielding deep eddies that are phase-locked to those at the surface. In addition, topography facilitates scattering of energy at depth to other scales. So, instability over rough topography could be an efficient, and largely overlooked, means of transferring mesoscale energy to the dissipative scales.

Significance Statement

This study investigates the effects of bottom roughness on large-scale ocean currents and their associated eddies. Roughness affects the eddy size and speed and how they exchange energy with the mean flow. Roughness also facilitates energy transfer to smaller scales where it can be dissipated. Thus, instability over rough topography could be an important part of the oceanic energy balance.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: André Palóczy, a.p.filho@geo.uio.no

Abstract

The instability of a surface-trapped jet over rough bottom topography is examined using a linearized quasigeostrophic model. The jet is laterally sheared and thus susceptible to both barotropic and baroclinic instability. The relative magnitude of the two depends on the jet width and on the spectral characteristics and amplitude of the bathymetry. The most unstable eddies in the upper layer are typically smaller over bathymetry than with a flat bottom. Topography also alters momentum flux convergence in the upper layer and causes the perturbations to resemble eddies in a 1.5-layer flow. But as long as the jet is wider than the deformation radius, baroclinic instability is present, yielding deep eddies that are phase-locked to those at the surface. In addition, topography facilitates scattering of energy at depth to other scales. So, instability over rough topography could be an efficient, and largely overlooked, means of transferring mesoscale energy to the dissipative scales.

Significance Statement

This study investigates the effects of bottom roughness on large-scale ocean currents and their associated eddies. Roughness affects the eddy size and speed and how they exchange energy with the mean flow. Roughness also facilitates energy transfer to smaller scales where it can be dissipated. Thus, instability over rough topography could be an important part of the oceanic energy balance.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: André Palóczy, a.p.filho@geo.uio.no
Save