• Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 498 pp.

    • Crossref
    • Export Citation
  • Bourgault, D., and D. E. Kelley, 2003: Wave-induced boundary mixing in a partially mixed estuary. J. Mar. Res., 61, 553576, https://doi.org/10.1357/002224003771815954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgault, D., M. D. Blokhina, R. Mirshak, and D. E. Kelley, 2007: Evolution of a shoaling internal solitary wavetrain. Geophys. Res. Lett., 34, L03601, https://doi.org/10.1029/2006GL028462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, P., A. Valle-Levinson, and H. E. de Swart, 2010: Residual currents induced by asymmetric tidal mixing in weakly stratified narrow estuaries. J. Phys. Oceanogr., 40, 21352147, https://doi.org/10.1175/2010JPO4314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, P., A. Valle-Levinson, and H. E. de Swart, 2011: A numerical study of residual estuarine circulation induced by asymmetric tidal mixing in tidally dominated estuaries. J. Geophys. Res., 116, C01017, https://doi.org/10.1029/2010JC006137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., S. Vagle, L. Armi, and D. M. Farmer, 2003: Stratified flow over topography: Upstream influence and generation of nonlinear internal waves. Proc. Roy. Soc. London, 459A, 14671487, https://doi.org/10.1098/rspa.2002.1077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, J. C. B., M. C. Buijsman, and J. M. Magalhaes, 2015: Internal waves on the upstream side of a large sill of the Mascarene Ridge: A comprehensive view of their generation mechanisms and evolution. Deep-Sea Res. I, 99, 87104, https://doi.org/10.1016/j.dsr.2015.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, K. R., 1982: Mixing caused by lateral internal seiching within a partially mixed estuary. Estuarine Coastal Shelf Sci., 15, 443457, https://doi.org/10.1016/0272-7714(82)90053-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and J. D. Smith, 1980: Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res., 27A, 239254, https://doi.org/10.1016/0198-0149(80)90015-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and L. Armi, 1999: The generation and trapping of solitary waves over topography. Science, 283, 188190, https://doi.org/10.1126/science.283.5399.188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and P. MacCready, 2014: The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197, https://doi.org/10.1146/annurev-fluid-010313-141302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M. C., and L. J. Pratt, 2010: Flow and hydraulics near the sill of Hood Canal, a strongly sheared, continuously stratified fjord. J. Phys. Oceanogr., 40, 10871105, https://doi.org/10.1175/2010JPO4312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. J. Nauw, and L. R. M. Maas, 2011: Observations of estuarine circulation and solitary internal waves in a highly energetic tidal channel. Ocean Dyn., 61, 17671782, https://doi.org/10.1007/s10236-011-0455-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., and W. R. Geyer, 2004: An idealized study of the structure of long, partially mixed estuaries. J. Phys. Oceanogr., 34, 26772691, https://doi.org/10.1175/JPO2646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holden, J. J., S. H. Derbyshire, and S. E. Belcher, 2000: Tethered balloon observations of the nocturnal stable boundary layer in a valley. Bound.-Layer Meteor., 97, 124, https://doi.org/10.1023/A:1002628924673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99, 25 23525 266, https://doi.org/10.1029/94JC02257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, https://doi.org/10.1175/2007JPO3728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. M. Legg, and R. Pinkel, 2010: High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech., 644, 321336, https://doi.org/10.1017/S0022112009992503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 1994: Numerical experiments of internal wave generation by strong tidal flow across a finite-amplitude bank edge. J. Geophys. Res., 99, 843864, https://doi.org/10.1029/93JC02514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., 2021: Mixing by oceanic lee waves. Annu. Rev. Fluid Mech., 53, 173201, https://doi.org/10.1146/annurev-fluid-051220-043904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964, https://doi.org/10.1175/2008JPO3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., and Coauthors, 2016a: The METCRAX II field experiment: A study of downslope windstorm-type flows in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 97, 217235, https://doi.org/10.1175/BAMS-D-14-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., R. Rotunno, and C. D. Whiteman, 2016b: Flow regimes over a basin induced by upstream katabatic flows—An idealized modeling study. J. Atmos. Sci., 73, 38213842, https://doi.org/10.1175/JAS-D-16-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., P. Cheng, R. Chant, A. Valle-Levinson, and K. Arnott, 2014: Analysis of vortex dynamics of lateral circulation in a straight tidal estuary. J. Phys. Oceanogr., 44, 27792795, https://doi.org/10.1175/JPO-D-13-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, W., P. MacCready, and R. Dewey, 2005: Boundary layer forcing of a semidiurnal, cross-channel seiche. J. Phys. Oceanogr., 35, 15181537, https://doi.org/10.1175/JPO2778.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1979: A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, 338346, https://doi.org/10.1029/JC084iC01p00338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, F. T., and O. B. Fringer, 2017: An unambiguous definition of the Froude number for lee waves in the deep ocean. J. Fluid Mech., 831, R3, https://doi.org/10.1017/jfm.2017.701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes. II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, A. L., K. R. Dyer, and R. E. Lewis, 1986: Predictions of the generation and propagation of internal waves and mixing in a partially stratified estuary. Estuarine Coastal Shelf Sci., 22, 199214, https://doi.org/10.1016/0272-7714(86)90113-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., 1999: Spatial and temporal variability of turbulent mixing in an estuary. J. Mar. Res., 57, 805845, https://doi.org/10.1357/002224099321514060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, C., D. Bourgault, P. S. Galbraith, A. Hay, and D. E. Kelley, 2013: Measurements of shoaling internal waves and turbulence in an estuary. J. Geophys. Res. Oceans, 118, 273286, https://doi.org/10.1029/2012JC008154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and M. Lehner, 2016: Two-layer stratified flow past a valley. J. Atmos. Sci., 73, 40654076, https://doi.org/10.1175/JAS-D-16-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarabun, C. C., and D. C. Dubbel, 1990: High-resolution thermistor chain observations in the upper Chesapeake Bay. Johns Hopkins APL Tech. Dig., 11, 4853.

    • Search Google Scholar
    • Export Citation
  • Sturley, D. R., and K. R. Dyer, 1992: A topographically induced internal wave and mixing in the Tamar Estuary. Dynamics and Exchanges in Estuaries and the Coastal Zone, D. Prandle, Ed., Coastal and Estuarine Studies, Vol. 40, Amer. Geophys. Union, 57–74.

    • Crossref
    • Export Citation
  • Vlasenko, V., N. Stashchuk, M. R. Palmer, and M. E. Inall, 2013: Generation of baroclinic tides over an isolated underwater bank. J. Geophys. Res. Oceans, 118, 43954408, https://doi.org/10.1002/jgrc.20304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., 2006: Tidally generated internal waves in partially mixed estuaries. Cont. Shelf Res., 26, 14691480, https://doi.org/10.1016/j.csr.2006.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., 2016: The turbulent transition of a supercritical downslope flow: Sensitivity to downstream conditions. J. Fluid Mech., 792, 9971012, https://doi.org/10.1017/jfm.2016.113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and M. Li, 2019: Generation of internal lee waves by lateral circulation in a coastal plain estuary. J. Phys. Oceanogr., 49, 16871697, https://doi.org/10.1175/JPO-D-18-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., M. Li, and W. C. Boicourt, 2017a: Breaking of internal solitary waves generated by an estuarine gravity current. Geophys. Res. Lett., 44, 73667373, https://doi.org/10.1002/2017GL073824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., M. Li, M. E. Scully, and W. C. Boicourt, 2017b: Generation of internal solitary waves by lateral circulation in a stratified estuary. J. Phys. Oceanogr., 47, 17891797, https://doi.org/10.1175/JPO-D-16-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 458 458 12
Full Text Views 154 154 12
PDF Downloads 127 127 12

A Regime Diagram for Internal Lee Waves in Coastal Plain Estuaries

Renjian LiaHorn Point Lab, University of Maryland Center for Environmental Science, Cambridge, Maryland

Search for other papers by Renjian Li in
Current site
Google Scholar
PubMed
Close
and
Ming LiaHorn Point Lab, University of Maryland Center for Environmental Science, Cambridge, Maryland

Search for other papers by Ming Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using an idealized channel representative of a coastal plain estuary, we conducted numerical simulations to investigate the generation of internal lee waves by lateral circulation. It is shown that the lee waves can be generated across all salinity regimes in an estuary. Since the lateral currents are usually subcritical with respect to the lowest mode, mode-2 lee waves are most prevalent but a hydraulic jump may develop during the transition to subcritical flows in the deep channel, producing high energy dissipation and strong mixing. Unlike flows over a sill, stratified water in the deep channel may become stagnant such that a mode-1 depression wave can form higher up in the water column. With the lee wave Froude number above 1 and the intrinsic wave frequency between the inertial and buoyancy frequency, the lee waves generated in coastal plain estuaries are nonlinear waves with the wave amplitude Δh scaling approximately with V/N¯, where V is the maximum lateral flow velocity and N¯ is the buoyancy frequency. The model results are summarized using the estuarine classification diagram based on the freshwater Froude number Frf and the mixing parameter M. The Δh decreases with increasing Frf as stronger stratification suppresses waves, and no internal waves are generated at large Frf. The Δh initially increases with increasing M as the lateral flows become stronger with stronger tidal currents, but decreases or saturates to a certain amplitude as M further increases. This modeling study suggests that lee waves can be generated over a wide range of estuarine conditions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renjian Li, rli@umces.edu

Abstract

Using an idealized channel representative of a coastal plain estuary, we conducted numerical simulations to investigate the generation of internal lee waves by lateral circulation. It is shown that the lee waves can be generated across all salinity regimes in an estuary. Since the lateral currents are usually subcritical with respect to the lowest mode, mode-2 lee waves are most prevalent but a hydraulic jump may develop during the transition to subcritical flows in the deep channel, producing high energy dissipation and strong mixing. Unlike flows over a sill, stratified water in the deep channel may become stagnant such that a mode-1 depression wave can form higher up in the water column. With the lee wave Froude number above 1 and the intrinsic wave frequency between the inertial and buoyancy frequency, the lee waves generated in coastal plain estuaries are nonlinear waves with the wave amplitude Δh scaling approximately with V/N¯, where V is the maximum lateral flow velocity and N¯ is the buoyancy frequency. The model results are summarized using the estuarine classification diagram based on the freshwater Froude number Frf and the mixing parameter M. The Δh decreases with increasing Frf as stronger stratification suppresses waves, and no internal waves are generated at large Frf. The Δh initially increases with increasing M as the lateral flows become stronger with stronger tidal currents, but decreases or saturates to a certain amplitude as M further increases. This modeling study suggests that lee waves can be generated over a wide range of estuarine conditions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renjian Li, rli@umces.edu
Save