• Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and R. Murtugudde, 2004: Role of Indian Ocean in regional climate variability. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 213246, https://doi.org/10.1029/147GM13.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp., https://doi.org/10.7289/V5NZ85MT.

  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., K.-J. Ha, J.-Y. Lee, B. Wang, B.-H. Kim, and C. E. Chung, 2014: Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Climate Dyn., 43, 535551, https://doi.org/10.1007/s00382-013-2002-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and M. J. McPhaden, 1997: The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102, 85338553, https://doi.org/10.1029/97JC00020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T., and M. McPhaden, 2002: Interannual sea surface salinity and temperature changes in the western Pacific warm pool during the 1992–2000. J. Geophys. Res., 107, 8002, https://doi.org/10.1029/2001JC000862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and Y. Zhang, 2015: Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean dipole mode. J. Climate, 28, 695713, https://doi.org/10.1175/JCLI-D-14-00435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, https://doi.org/10.1175/JCLI-D-12-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, F., G. Alory, R. Dussin, and N. Reul, 2013: SMOS reveals the signature of Indian Ocean dipole events. Ocean Dyn., 63, 12031212, https://doi.org/10.1007/s10236-013-0660-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., Z. Wu, and G. Liu, 2014: Fast multidimensional ensemble empirical mode decomposition using a data compression technique. J. Climate, 27, 34923504, https://doi.org/10.1175/JCLI-D-13-00746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep-Sea Res. II, 50, 22632284, https://doi.org/10.1016/S0967-0645(03)00056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., P. Hacker, and R. Lukas, 1998: Upper ocean heat and salt balances in response to a westerly wind burst in the western equatorial Pacific during TOGA COARE. J. Geophys. Res., 103, 1028910311, https://doi.org/10.1029/97JC03286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, and S. Wijffels, 2001: Interannual upper ocean variability in the tropical Indian Ocean. Geophys. Res. Lett., 28, 41514154, https://doi.org/10.1029/2001GL013475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, https://doi.org/10.1175/JCLI3478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2004: The interannual variability of the North Atlantic Ocean revealed by combined data from TOPEX/Poseidon and Jason altimetric measurements. Geophys. Res. Lett., 31, L23303, https://doi.org/10.1029/2004GL021200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grunseich, G., B. Subrahmanyam, V. S. N. Murty, and B. S. Giese, 2011: Sea surface salinity variability during the Indian Ocean dipole and ENSO events in the tropical Indian Ocean. J. Geophys. Res., 116, C11013, https://doi.org/10.1029/2011JC007456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and J. P. McCreary Jr., 2001: Modeling salinity distributions in the Indian Ocean. J. Geophys. Res., 106, 859877, https://doi.org/10.1029/2000JC000316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, Y. Masumoto, J. Vialard, and B. Duncan, 2011: Basin resonances in the equatorial Indian Ocean. J. Phys. Oceanogr., 41, 12521270, https://doi.org/10.1175/2011JPO4591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. de Ruijter, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2016: Interannual variability of the Indonesian throughflow: The salinity effect. J. Geophys. Res. Oceans, 121, 25962615, https://doi.org/10.1002/2015JC011495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007a: Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical Pacific. J. Climate, 20, 29172936, https://doi.org/10.1175/JCLI4151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007b: Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J. Climate, 20, 29372960, https://doi.org/10.1175/JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, A454, 903995, https://doi.org/10.1098/rspa.1998.0193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550567, https://doi.org/10.1175/2008JCLI2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kido, S., T. Tozuka, and W. Han, 2019: Anatomy of salinity anomalies associated with the positive Indian Ocean Dipole. J. Geophys. Res. Oceans, 124, 81168139, https://doi.org/10.1029/2019JC015163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2014: How variable is the uncertainty in ENSO sea surface temperature prediction? J. Climate, 27, 27792788, https://doi.org/10.1175/JCLI-D-13-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. Liang, Y. Tang, C. Dong, D. Chen, X. Liu, and W. Jin, 2016: A new dipole index of the salinity anomalies of the tropical Indian Ocean. Sci. Rep., 6, 24260, https://doi.org/10.1038/srep24260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, S., J.-P. Boulanger, C. Menkes, P. Delecluse, and T. Yamagata, 2004: Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. J. Geophys. Res., 109, C02002, https://doi.org/10.1029/2003JC001807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and M. Nagura, 2014: Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dyn., 42, 15691586, https://doi.org/10.1007/s00382-013-1765-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K., M. A. Balmaseda, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo. 668, 61 pp., https://www.ecmwf.int/en/elibrary/11174-nemovar-ocean-data-assimilation-system-implemented-ecmwf-ocean-analysis-system-4.

    • Search Google Scholar
    • Export Citation
  • Nyadjro, E. S., and M. J. McPhaden, 2014: Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. J. Geophys. Res. Oceans, 119, 79697986, https://doi.org/10.1002/2014JC010380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nyadjro, E. S., and B. Subrahmanyam, 2014: SMOS satellite mission reveals the salinity structure of the Indian Ocean Dipole. IEEE Geosci. Remote Sens. Lett., 11, 15641568, https://doi.org/10.1109/LGRS.2014.2301594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, and U. Mikolajewicz, 1995: The competing roles of heat and freshwater flux in forcing thermohaline oscillations. J. Phys. Oceanogr., 25, 20462064, https://doi.org/10.1175/1520-0485(1995)025<2046:CROHAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res. II, 49, 15491572, https://doi.org/10.1016/S0967-0645(01)00158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1994: The ocean freshwater cycle report of the JSC Ocean Observing System Development Panel. UNESCO Intergovernmental Oceanographic Commission Rep. of Meetings of Experts and Equivalent Bodies 83, 40 pp., https://www.jodc.go.jp/info/ioc_doc/Experts/095388eb.pdf.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, https://doi.org/10.5670/oceanog.2008.63.

  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51 (1), 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, L., and Coauthors, 2017: An assessment of upper ocean salinity content from the Ocean Reanalyses Inter-comparison Project (ORA-IP). Climate Dyn., 49, 10091029, https://doi.org/10.1007/s00382-015-2868-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, G., B. Huang, R. Ren, and Z.-Z. Hu, 2021: Basinwide connections of upper-ocean temperature variability in the equatorial Indian Ocean. J. Climate, 34, 46754692, https://doi.org/10.1175/JCLI-D-20-0419.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, J. W., and P. P. Niiler, 1983: Upper ocean heat budget during the Hawaii-to-Tahiti Shuttle Experiment. J. Phys. Oceanogr., 13, 18941907, https://doi.org/10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subrahmanyam, B., V. S. N. Murty, and D. M. Heffner, 2011: Sea surface salinity variability in the tropical Indian Ocean. Remote Sens. Environ., 115, 944956, https://doi.org/10.1016/j.rse.2010.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., Y. Du, Y. Zhang, M. Feng, J. S. Chowdary, J. Chi, S. Qiu, and W. Yu, 2019: Evolution of sea surface salinity anomalies in the southwestern tropical Indian Ocean during 2010–2011 influenced by a negative IOD event. J. Geophys. Res. Oceans, 124, 34283445, https://doi.org/10.1029/2018JC014580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, B., C. Gnanaseelan, and P. S. Salvekar, 2006: Variability in the Indian Ocean circulation and salinity and its impact on SST anomalies during dipole events. J. Mar. Res., 64, 853880, https://doi.org/10.1357/002224006779698350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., 2001: Statistical methods for signal detection in climate. DCESS Tech. Rep. 2, 96 pp., https://www.atmos.colostate.edu/∼davet/AT655/notes/VenegasNotes.pdf.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., and Y. Tang, 2019: Seasonal predictability of the tropical Indian Ocean SST in the North American multimodel ensemble. Climate Dyn., 53, 33613372, https://doi.org/10.1007/s00382-019-04709-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1 (1), 141, https://doi.org/10.1142/S1793536909000047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. Behera, J.-J. Luo, S. Masson, M. Jury, and S. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189212.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., M. Feng, Y. Du, J. Lan, and S. E. Wijffels, 2016: Seasonal and interannual variations of mixed layer salinity in the southeast tropical Indian Ocean. J. Geophys. Res. Oceans, 121, 47164731, https://doi.org/10.1002/2016JC011854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, S. Zheng, Y. Yang, and X. Cheng, 2013: Impact of Indian Ocean dipole on the salinity budget in the equatorial Indian Ocean. J. Geophys. Res. Oceans, 118, 49114923, https://doi.org/10.1002/jgrc.20392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, and T. Qu, 2016: A sea surface salinity dipole mode in the tropical Indian Ocean. Climate Dyn., 47, 25732585, https://doi.org/10.1007/s00382-016-2984-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, and M. Feng, 2018: Multiple time scale variability of the sea surface salinity dipole mode in the tropical Indian Ocean. J. Climate, 31, 283296, https://doi.org/10.1175/JCLI-D-17-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, A. Kumar, and J. L. Kinter III, 2015: Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J. Climate, 28, 79627984, https://doi.org/10.1175/JCLI-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 346 346 42
Full Text Views 127 127 10
PDF Downloads 73 73 19

Leading-Mode Connections of the Interannual Variability in Upper-Ocean Salinity in the Tropical Indian Ocean

Ke HuangaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Ke Huang in
Current site
Google Scholar
PubMed
Close
,
Ming FengdCSIRO Oceans and Atmosphere, Crawley, Western Australia, Australia

Search for other papers by Ming Feng in
Current site
Google Scholar
PubMed
Close
,
Ying WueState Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China

Search for other papers by Ying Wu in
Current site
Google Scholar
PubMed
Close
,
Dongxiao WangfSchool of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
gGuangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China

Search for other papers by Dongxiao Wang in
Current site
Google Scholar
PubMed
Close
,
Wen ZhouhDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Wen Zhou in
Current site
Google Scholar
PubMed
Close
,
Tingting ZuaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Tingting Zu in
Current site
Google Scholar
PubMed
Close
,
Weiqiang WangaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Weiqiang Wang in
Current site
Google Scholar
PubMed
Close
,
Qiang XieaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
iInstitute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China

Search for other papers by Qiang Xie in
Current site
Google Scholar
PubMed
Close
,
Lei YangaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Lei Yang in
Current site
Google Scholar
PubMed
Close
,
Jinglong YaoaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Jinglong Yao in
Current site
Google Scholar
PubMed
Close
, and
Wei ZhouaState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Wei Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Leading modes of interannual variability in upper-ocean salinity in the tropical Indian Ocean (TIO) and their connections were studied based on 17 years (2002–18) of oceanic historical and reanalysis data. Empirical orthogonal function (EOF) analysis depicted the dominant roles of the first two leading modes in salinity variability in the TIO over a wide range of interannual time scales. Among the rich oscillations of the leading EOF modes, a coherent near-biennial band was identified with basinwide loading of sea surface salinity anomalies (SSSa) (EOF1) leading/lagging the northeast–southwest dipolar mode of SSSa (EOF2) by around 4 months across the TIO, with southwestward migration of SSSa center. The spatial loadings of the SSSa leading modes in the TIO were strongly shaped by sea surface temperature–related freshwater fluxes and wind-driven regional ocean circulation on a near-biennial time scale. Composite analysis of the mixed layer salinity budget reflected characteristic features of basin-scale ocean–atmosphere coupling, both temporally and regionally during the life cycle of the near-biennial fluctuation in anomalous salinity in the TIO. Consistent with the intrinsic oscillation paradigm in the observed Indian Ocean dipole (IOD) variation, the dynamic and thermodynamic feedbacks associated with switches from the positive to negative IOD modes provided the phase-connection mechanisms for the SSSa leading-mode displacement over the TIO.

Significance Statement

This study investigates the leading modes of interannual variability in upper-ocean salinity in the tropical Indian Ocean (TIO). The intrinsic oscillation and associated dynamic and thermodynamic feedbacks over the TIO drive the basinwide connections of upper-ocean salinity variability. Our results show that a coherent near-biennial band is identifiable within the leading modes of sea surface salinity anomalies (SSSa), in which the wind-induced horizontal advections and evaporation-minus-precipitation anomalies associated with the switches from positive to negative Indian Ocean dipole modes mainly provide the phase-transition mechanism of SSSa. This research illustrates substantial evidence for the displacement of basin-scale sea surface temperature anomalies modulating the structures of SSSa and inducing the dynamical connections of leading modes of SSSa on the near-biennial time scale.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Xie: Deceased.

Corresponding author: Dongxiao Wang, dxwang@scsio.ac.cn; Weiqiang Wang, weiqiang.wang@scsio.ac.cn

Abstract

Leading modes of interannual variability in upper-ocean salinity in the tropical Indian Ocean (TIO) and their connections were studied based on 17 years (2002–18) of oceanic historical and reanalysis data. Empirical orthogonal function (EOF) analysis depicted the dominant roles of the first two leading modes in salinity variability in the TIO over a wide range of interannual time scales. Among the rich oscillations of the leading EOF modes, a coherent near-biennial band was identified with basinwide loading of sea surface salinity anomalies (SSSa) (EOF1) leading/lagging the northeast–southwest dipolar mode of SSSa (EOF2) by around 4 months across the TIO, with southwestward migration of SSSa center. The spatial loadings of the SSSa leading modes in the TIO were strongly shaped by sea surface temperature–related freshwater fluxes and wind-driven regional ocean circulation on a near-biennial time scale. Composite analysis of the mixed layer salinity budget reflected characteristic features of basin-scale ocean–atmosphere coupling, both temporally and regionally during the life cycle of the near-biennial fluctuation in anomalous salinity in the TIO. Consistent with the intrinsic oscillation paradigm in the observed Indian Ocean dipole (IOD) variation, the dynamic and thermodynamic feedbacks associated with switches from the positive to negative IOD modes provided the phase-connection mechanisms for the SSSa leading-mode displacement over the TIO.

Significance Statement

This study investigates the leading modes of interannual variability in upper-ocean salinity in the tropical Indian Ocean (TIO). The intrinsic oscillation and associated dynamic and thermodynamic feedbacks over the TIO drive the basinwide connections of upper-ocean salinity variability. Our results show that a coherent near-biennial band is identifiable within the leading modes of sea surface salinity anomalies (SSSa), in which the wind-induced horizontal advections and evaporation-minus-precipitation anomalies associated with the switches from positive to negative Indian Ocean dipole modes mainly provide the phase-transition mechanism of SSSa. This research illustrates substantial evidence for the displacement of basin-scale sea surface temperature anomalies modulating the structures of SSSa and inducing the dynamical connections of leading modes of SSSa on the near-biennial time scale.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Xie: Deceased.

Corresponding author: Dongxiao Wang, dxwang@scsio.ac.cn; Weiqiang Wang, weiqiang.wang@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.45 MB)
Save