• Arbic, B., and Coauthors, 2018: A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography, E. Chassignet et al., Eds., GODAE OceanView, 307–392, https://doi.org/10.17125/gov2018.ch13.

    • Crossref
    • Export Citation
  • Buijsman, M. C., B. K. Arbic, J. G. Richman, J. F. Shriver, A. J. Wallcraft, and L. Zamudio, 2017: Semidiurnal internal tide incoherence in the equatorial Pacific. J. Geophys. Res. Oceans, 122, 52865305, https://doi.org/10.1002/2016JC012590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2020: On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modell., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656.

    • Crossref
    • Export Citation
  • Cacchione, D. A., L. F. Praston, and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727, https://doi.org/10.1126/science.1069803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrere, L., and Coauthors, 2021: Accuracy assessment of global internal tide models using satellite altimetry. Ocean Sci., 17, 147180, https://doi.org/10.5194/os-17-147-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors., 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Export Citation
  • Dunphy, M., A. L. Ponte, P. Klein, and S. Le Gentil, 2017: Low-mode internal tide propagation in a turbulent eddy field. J. Phys. Oceanogr., 47, 649665, https://doi.org/10.1175/JPO-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2015: An empirical model for mode-1 internal tides derived from satellite altimetry: Computing accurate tidal predictions at arbitrary points over the world oceans. Tech. Memo. APL-UW 1-15, Applied Physics Laboratory, University of Washington, 114 pp., https://apl.uw.edu/project/projects/tm_1-15/pdfs/tm_1_15.pdf.

    • Crossref
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EU Copernicus Marine Service Information, 2022: Quality Information Document (CMEMS-SL-QUID-008-032-068). 72 pp., EU Copernicus Marine Service Information, https://doi.org/10.48670/moi-00146.

    • Crossref
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, https://doi.org/10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., P. F. J. Lermusiaux, T. F. Duda, and P. J. Haley Jr., 2016: A coupled-mode shallow-water model for tidal analysis: Internal tide reflection and refraction by the Gulf Stream. J. Phys. Oceanogr., 46, 36613679, https://doi.org/10.1175/JPO-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., A. F. Waterhouse, and A. C. Savage, 2021: Global dynamics of the stationary M2 mode-1 internal tide. Geophys. Res. Lett., 48, e2020GL091692, https://doi.org/10.1029/2020GL091692.

    • Crossref
    • Export Citation
  • Li, Z., and J.-S. von Storch, 2020: M2 internal-tide generation in STORMTIDE2. J. Geophys. Res. Oceans, 125, e2019JC015453, https://doi.org/10.1029/2019JC015453.

    • Crossref
    • Export Citation
  • Löb, J., J. Köhler, C. Mertens, M. Walter, Z. Li, J.-S. von Storch, Z. Zhao, and M. Rhein, 2020: Observations of the low-mode internal tide and its interaction with mesoscale flow south of the Azores. J. Geophys. Res. Oceans, 125, e2019JC015879, https://doi.org/10.1029/2019JC015879.

    • Crossref
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

    • Crossref
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave-driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., F. Pollmann, and C. Eden, 2020: On PSI interactions in internal gravity wave fields and the decay of baroclinic tides. J. Phys. Oceanogr., 50, 751771, https://doi.org/10.1175/JPO-D-19-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollmann, F., J. Nycander, C. Eden, and D. Olbers, 2019: Resolving the horizontal direction of internal tide generation. J. Fluid Mech., 864, 381407, https://doi.org/10.1017/jfm.2019.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and P. Klein, 2015: Incoherent signature of internal tides on sea level in idealized numerical simulations. Geophys. Res. Lett., 42, 1520–1526, https://doi.org/10.1002/2014GL062583.

    • Crossref
    • Export Citation
  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 12591262, https://doi.org/10.1029/2000GL012447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. A. Byrne, 2010: Bottom pressure tides along a line in the southeast Atlantic Ocean and comparisons with satellite altimetry. Ocean Dyn., 60, 11671176, https://doi.org/10.1007/s10236-010-0316-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617.

  • Ray, R. D., and E. D. Zaron, 2016: M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46, 322, https://doi.org/10.1175/JPO-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355–357, https://doi.org/10.1126/science.1085837.

    • Crossref
    • Export Citation
  • Sasaki, H., S. Kida, R. Furue, M. Nonaka, and Y. Masumoto, 2018: An increase of the Indonesian throughflow by internal tidal mixing in a high-resolution quasi-global ocean simulation. Geophys. Res. Lett., 45, 84168424, https://doi.org/10.1029/2018GL078040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., A. F. Waterhouse, and S. M. Kelly, 2020: Internal tide nonstationarity and wave-mesoscale interactions in the Tasman Sea. J. Phys. Oceanogr., 50, 29312951, https://doi.org/10.1175/JPO-D-19-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., 2020: Interdependence of internal tide and lee wave generation at abyssal hills: Global calculations. J. Phys. Oceanogr., 50, 655677, https://doi.org/10.1175/JPO-D-19-0179.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Taburet, G., A. Sanchez-Roman, M. Ballarotta, M.-I. Pujol, J.-F. Legeais, F. Fournier, Y. Faugere, and G. Dibarboure, 2019: DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci., 15, 12071224, https://doi.org/10.5194/os-15-1207-2019.

    • Search Google Scholar
    • Export Citation
  • Ubelmann, C., L. Carrere, C. Durand, G. Dibarboure, Y. Faugère, M. Ballarotta, F. Briol, and F. Lyard, 2022: Simultaneous estimation of ocean mesoscale and coherent internal tide sea surface height signatures from the global altimetry record. Ocean Sci., 18, 469481, https://doi.org/10.5194/os-18-469-2022.

    • Search Google Scholar
    • Export Citation
  • Vic, C., and Coauthors, 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Search Google Scholar
    • Export Citation
  • Vic, C., B. Ferron, V. Thierry, H. Mercier, and P. Lherminier, 2021: Tidal and near-inertial internal waves over the Reykjanes Ridge. J. Phys. Oceanogr., 51, 419437, https://doi.org/10.1175/JPO-D-20-0097.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys. Space Phys., 13, 167182, https://doi.org/10.1029/RG013i001p00167.

  • Zaron, E. D., 2019a: Baroclinic tidal sea level from exact-repeating mission altimetry. J. Phys. Oceanogr., 49, 193210, https://doi.org/10.1175/JPO-D-18-0127.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2019b: Predictability of non-phase-locked baroclinic tides in the Caribbean Sea. Ocean Sci., 15, 12871305, https://doi.org/10.5194/os-15-1287-2019.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian ridge. J. Phys. Oceanogr., 44, 538557, https://doi.org/10.1175/JPO-D-12-0238.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and R. D. Ray, 2018: Aliased tidal variability in mesoscale sea level anomaly maps. J. Atmos. Oceanic Technol., 35, 24212435, https://doi.org/10.1175/JTECH-D-18-0089.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., R. C. Musgrave, and G. D. Egbert, 2022: Baroclinic tidal energetics inferred from satellite altimetry. J. Phys. Oceanogr., 52, 10151032, https://doi.org/10.1175/JPO-D-21-0096.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2016: Internal tide oceanic tomography. Geophys. Res. Lett., 43, 91579164, https://doi.org/10.1002/2016GL070567.

  • Zhao, Z., 2017: The global mode-1 S2 internal tide. J. Geophys. Res. Oceans, 122, 87948812, https://doi.org/10.1002/2017JC013112.

  • Zhao, Z., 2019: Mapping internal tides from satellite altimetry without blind directions. J. Geophys. Res. Oceans, 124, 86058625, https://doi.org/10.1029/2019JC015507.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2020: Southward internal tides in the northeastern South China Sea. J. Geophys. Res. Oceans, 125, e2020JC01654, https://doi.org/10.1029/2020JC016554.

  • Zhao, Z., 2021: Seasonal mode-1 M2 internal tides from satellite altimetry. J. Phys. Oceanogr., 51, 30153035, https://doi.org/10.1175/JPO-D-21-0001.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2022: Development of the yearly mode-1 M2 internal tide model in 2019. J. Atmos. Oceanic Technol., 39, 463478, https://doi.org/10.1175/JTECH-D-21-0116.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., and M. H. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684, https://doi.org/10.1175/2009JPO3922.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., J. Wang, D. Menemenlis, L.-L. Fu, S. Chen, and B. Qiu, 2019: Decomposition of the multimodal multidirectional M2 internal tide field. J. Atmos. Oceanic Technol., 36, 11571173, https://doi.org/10.1175/JTECH-D-19-0022.1.

    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 481 482 136
Full Text Views 147 147 62
PDF Downloads 158 158 34

Satellite Estimates of Mode-1 M2 Internal Tides Using Nonrepeat Altimetry Missions

Zhongxiang ZhaoaApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Zhongxiang Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5897-089X
Restricted access

Abstract

Previous satellite estimates of internal tides are usually based on 25 years of sea surface height (SSH) data from 1993 to 2017 measured by exact-repeat (ER) altimetry missions. In this study, new satellite estimates of internal tides are based on 8 years of SSH data from 2011 to 2018 measured mainly by nonrepeat (NR) altimetry missions. The two datasets are labeled ER25yr and NR8yr, respectively. NR8yr has advantages over ER25yr in observing internal tides because of its shorter time coverage and denser ground tracks. Mode-1 M2 internal tides are mapped from both datasets following the same procedure that consists of two rounds of plane wave analysis with a spatial bandpass filter in between. The denser ground tracks of NR8yr make it possible to examine the impact of window size in the first-round plane wave analysis. Internal tides mapped using six different windows ranging from 40 to 160 km have almost the same results on global average, but smaller windows can better resolve isolated generation sources. The impact of time coverage is studied by comparing NR8yr160km and ER25yr160km, which are mapped using 160-km windows in the first-round plane wave analysis. They are evaluated using independent satellite altimetry data in 2020. NR8yr160km has larger model variance and can cause larger variance reduction, suggesting that NR8yr160km is a better model than ER25yr160km. Their global energies are 43.6 and 33.6 PJ, respectively, with a difference of 10 PJ. Their energy difference is a function of location.

Significance Statement

Our understanding of internal tides is mainly limited by the scarcity of field measurements with sufficient spatiotemporal resolution. Satellite altimetry offers a unique technique for observing and predicting internal tides on a global scale. Previous satellite observations of internal tides are mainly based on 25 years of data from exact-repeat altimetry missions. This paper demonstrates that internal tides can be mapped using 8 years of data made by nonrepeat altimetry missions. The new dataset has shorter time coverage and denser ground tracks; therefore, one can examine the impact of window size and time coverage on mapping internal tides from satellite altimetry. A comparison of models mapped from the two datasets sheds new light on the spatiotemporal variability of internal tides.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongxiang Zhao, zzhao@apl.uw.edu

Abstract

Previous satellite estimates of internal tides are usually based on 25 years of sea surface height (SSH) data from 1993 to 2017 measured by exact-repeat (ER) altimetry missions. In this study, new satellite estimates of internal tides are based on 8 years of SSH data from 2011 to 2018 measured mainly by nonrepeat (NR) altimetry missions. The two datasets are labeled ER25yr and NR8yr, respectively. NR8yr has advantages over ER25yr in observing internal tides because of its shorter time coverage and denser ground tracks. Mode-1 M2 internal tides are mapped from both datasets following the same procedure that consists of two rounds of plane wave analysis with a spatial bandpass filter in between. The denser ground tracks of NR8yr make it possible to examine the impact of window size in the first-round plane wave analysis. Internal tides mapped using six different windows ranging from 40 to 160 km have almost the same results on global average, but smaller windows can better resolve isolated generation sources. The impact of time coverage is studied by comparing NR8yr160km and ER25yr160km, which are mapped using 160-km windows in the first-round plane wave analysis. They are evaluated using independent satellite altimetry data in 2020. NR8yr160km has larger model variance and can cause larger variance reduction, suggesting that NR8yr160km is a better model than ER25yr160km. Their global energies are 43.6 and 33.6 PJ, respectively, with a difference of 10 PJ. Their energy difference is a function of location.

Significance Statement

Our understanding of internal tides is mainly limited by the scarcity of field measurements with sufficient spatiotemporal resolution. Satellite altimetry offers a unique technique for observing and predicting internal tides on a global scale. Previous satellite observations of internal tides are mainly based on 25 years of data from exact-repeat altimetry missions. This paper demonstrates that internal tides can be mapped using 8 years of data made by nonrepeat altimetry missions. The new dataset has shorter time coverage and denser ground tracks; therefore, one can examine the impact of window size and time coverage on mapping internal tides from satellite altimetry. A comparison of models mapped from the two datasets sheds new light on the spatiotemporal variability of internal tides.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongxiang Zhao, zzhao@apl.uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 9.79 MB)
Save