• Aristizábal, M., and R. Chant, 2013: A numerical study of salt fluxes in Delaware Bay estuary. J. Phys. Oceanogr., 43, 15721588, https://doi.org/10.1175/JPO-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2009: Combined effects of wind, tide, and horizontal density gradients on stratification in estuaries and coastal seas. J. Phys. Oceanogr., 39, 21172136, https://doi.org/10.1175/2009JPO4142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatwin, P. C., 1976: Some remarks on the maintenance of the salinity distribution in estuaries. Estuarine Coastal Mar. Sci., 4, 555566, https://doi.org/10.1016/0302-3524(76)90030-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-N., and L. P. Sanford, 2009: Axial wind effects on stratification and longitudinal salt transport in an idealized, partially mixed estuary. J. Phys. Oceanogr., 39, 19051920, https://doi.org/10.1175/2009JPO4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Nijs, M. A., J. D. Pietrzak, and J. C. Winterwerp, 2011: Advection of the salt wedge and evolution of the internal flow structure in the Rotterdam Waterway. J. Phys. Oceanogr., 41, 327, https://doi.org/10.1175/2010JPO4228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dijkstra, Y. M., and H. M. Schuttelaars, 2021: A unifying approach to subtidal salt intrusion modeling in tidal estuaries. J. Phys. Oceanogr., 51, 147167, https://doi.org/10.1175/JPO-D-20-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dijkstra, Y. M., H. M. Schuttelaars, and H. Burchard, 2017: Generation of exchange flows in estuaries by tidal and gravitational eddy viscosity-shear covariance (ESCO). J. Geophys. Res. Oceans, 122, 42174237, https://doi.org/10.1002/2016JC012379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DTU, 2022: Global Wind Atlas 3.0. Technical University of Denmark (DTU), accessed 15 April 2022, https://globalwindatlas.info.

  • Elliott, A. J., 1978: Observations of the meteorologically induced circulation in the Potomac estuary. Estuarine Coastal Mar. Sci., 6, 285299, https://doi.org/10.1016/0302-3524(78)90017-8.

    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., 1997: Influence of wind on dynamics and flushing of shallow estuaries. Estuarine Coastal Shelf Sci., 44, 713722, https://doi.org/10.1006/ecss.1996.0140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and P. MacCready, 2014: The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197, https://doi.org/10.1146/annurev-fluid-010313-141302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, D. M., W. C. Boicourt, P. Hamilton, and D. W. Pritchard, 1987: Wind-induced destratification in Chesapeake Bay. J. Phys. Oceanogr., 17, 22322240, https://doi.org/10.1175/1520-0485(1987)017<2232:WIDICB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberman, R., 2013: Applied Partial Differential Equations with Fourier Series and Boundary Value Problems. 5th ed., Pearson, 648 pp.

    • Crossref
    • Export Citation
  • Hansen, D. V., and M. Rattray, 1965: Gravitational circulation in straits and estuaries. J. Mar. Res., 23, 104122.

  • Kullenberg, G. E., 1976: On vertical mixing and the energy transfer from the wind to the water. Tellus, 28, 159165, https://doi.org/10.3402/tellusa.v28i2.10268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, W., J. Pan, and A. T. Devlin, 2018: Impact of tides and winds on estuarine circulation in the Pearl River Estuary. Cont. Shelf Res., 168, 68–82, https://doi.org/10.1016/j.csr.2018.09.004.

    • Crossref
    • Export Citation
  • Lange, X., and H. Burchard, 2019: The relative importance of wind straining and gravitational forcing in driving exchange flows in tidally energetic estuaries. J. Phys. Oceanogr., 49, 723736, https://doi.org/10.1175/JPO-D-18-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., 2004: Toward a unified theory of tidally-averaged estuarine salinity structure. Estuaries, 27, 561570, https://doi.org/10.1007/BF02907644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, E. W., S. Y. Chao, L. P. Sanford, and R. R. Hood, 2004: The influence of wind and river pulses on an estuarine turbidity maximum: Numerical studies and field observations in Chesapeake Bay. Estuaries, 27, 132146, https://doi.org/10.1007/BF02803567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, D. W., 1952: Estuarine hydrography. Advances in Geophysics, Vol. 1, Academic Press, 243280, https://doi.org/10.1016/S0065-2687(08)60208-3.

    • Crossref
    • Export Citation
  • Ralston, D. K., W. R. Geyer, and J. A. Lerczak, 2008: Subtidal salinity and velocity in the Hudson River estuary: Observations and modeling. J. Phys. Oceanogr., 38, 753770, https://doi.org/10.1175/2007JPO3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schramkowski, G. P., and H. E. de Swart, 2002: Morphodynamic equilibrium in straight tidal channels: Combined effects of Coriolis force and external overtides. J. Geophys. Res., 107, 3227, https://doi.org/10.1029/2000JC000693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, M. E., C. Friedrichs, and J. Brubaker, 2005: Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries, 28, 321326, https://doi.org/10.1007/BF02693915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, D. W., and S. W. Nixon, 1992: Stratification and bottom-water hypoxia in the Pamlico River estuary. Estuaries, 15, 270281, https://doi.org/10.2307/1352775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uncles, R. J., and J. A. Stephens, 2011: The effects of wind, runoff and tides on salinity in a strongly tidal sub-estuary. Estuaries Coasts, 34, 758774, https://doi.org/10.1007/s12237-010-9365-3.

    • Search Google Scholar
    • Export Citation
  • van de Kreeke, J., and K. Robaczewska, 1989: Effect of wind on the vertical circulation and stratification in the Volkerak Estuary. Neth. J. Sea Res., 23, 239253, https://doi.org/10.1016/0077-7579(89)90045-8.

    • Search Google Scholar
    • Export Citation
  • Wang, P. D., 1979: Wind-driven circulation in the Chesapeake Bay, winter 1975. J. Phys. Oceanogr., 9, 564–572, https://doi.org/10.1175/1520-0485(1979)009<0564:WDCITC>2.0.CO;2.

  • Weisberg, R. H., and W. Sturges, 1976: Velocity observations in the West Passage of Narragansett Bay: A partially mixed estuary. J. Phys. Oceanogr., 6, 345354, https://doi.org/10.1175/1520-0485(1976)006<0345:VOITWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1969: Wind stress and surface roughness at air-sea interface. J. Geophys. Res., 74, 444455, https://doi.org/10.1029/JB074i002p00444.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and M. Li, 2018: Effects of wind straining on estuarine stratification: A combined observational and modeling study. J. Geophys. Res. Oceans, 123, 23632380, https://doi.org/10.1002/2017JC013470.

    • Search Google Scholar
    • Export Citation
  • Xu, H., J. Lin, and D. Wang, 2008: Numerical study on salinity stratification in the Pamlico River Estuary. Estuarine Coastal Shelf Sci., 80, 7484, https://doi.org/10.1016/j.ecss.2008.07.014.

    • Search Google Scholar
    • Export Citation
  • Zimmerman, J. T. F., 1982: On the Lorentz linearization of a quadratically damped forced oscillator. Phys. Lett., 89, 123124, https://doi.org/10.1016/0375-9601(82)90871-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 801 802 37
Full Text Views 100 100 3
PDF Downloads 92 92 3

Influence of Wind on Subtidal Salt Intrusion and Stratification in Well-Mixed and Partially Stratified Estuaries

Hendrik JongbloedaHydrology and Quantitative Water Management Group, Wageningen University and Research, Wageningen, Netherlands

Search for other papers by Hendrik Jongbloed in
Current site
Google Scholar
PubMed
Close
,
Henk M. SchuttelaarsbDelft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands

Search for other papers by Henk M. Schuttelaars in
Current site
Google Scholar
PubMed
Close
,
Yoeri M. DijkstrabDelft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands

Search for other papers by Yoeri M. Dijkstra in
Current site
Google Scholar
PubMed
Close
,
Paul B. DonkersbDelft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands

Search for other papers by Paul B. Donkers in
Current site
Google Scholar
PubMed
Close
, and
Antonius J. F. HoitinkaHydrology and Quantitative Water Management Group, Wageningen University and Research, Wageningen, Netherlands

Search for other papers by Antonius J. F. Hoitink in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An idealized width-averaged model is employed to study the influence of wind stress on subtidal salt intrusion and stratification in well-mixed and partially stratified estuaries. We show that even in mild conditions, wind forcing can influence the estuarine salinity structure in a substantial way. By studying the role of wind forcing on dominant salt transport balances and associated salt transport regimes, we unify and clarify ambiguous observations from previous authors regarding the influence of wind stress: the response of the estuarine salinity structure to wind forcing is different depending on the underlying dominant salt transport balance, which in turn was found to determine whether wind-induced salinity shear, wind-induced modulation of the longitudinal salt distribution, or wind-induced mixing dominates.

Significance Statement

The purpose of this idealized study is to better understand how wind influences the salinity distribution in estuaries on large time scales. This is important because a change in winds can move saline water further inland, threatening freshwater availability and the natural balance of delicate ecosystems. We clarify the sometimes ambiguous observations regarding the influence of wind on the salt distribution and highlight the importance of including average wind forcing in analyses of estuarine dynamics on large time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hendrik Jongbloed, henk.jongbloed@wur.nl

Abstract

An idealized width-averaged model is employed to study the influence of wind stress on subtidal salt intrusion and stratification in well-mixed and partially stratified estuaries. We show that even in mild conditions, wind forcing can influence the estuarine salinity structure in a substantial way. By studying the role of wind forcing on dominant salt transport balances and associated salt transport regimes, we unify and clarify ambiguous observations from previous authors regarding the influence of wind stress: the response of the estuarine salinity structure to wind forcing is different depending on the underlying dominant salt transport balance, which in turn was found to determine whether wind-induced salinity shear, wind-induced modulation of the longitudinal salt distribution, or wind-induced mixing dominates.

Significance Statement

The purpose of this idealized study is to better understand how wind influences the salinity distribution in estuaries on large time scales. This is important because a change in winds can move saline water further inland, threatening freshwater availability and the natural balance of delicate ecosystems. We clarify the sometimes ambiguous observations regarding the influence of wind on the salt distribution and highlight the importance of including average wind forcing in analyses of estuarine dynamics on large time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hendrik Jongbloed, henk.jongbloed@wur.nl
Save