• Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 19711979, https://doi.org/10.1029/JC083iC04p01971.

  • Armi, L., 1979a: Effects of variations in eddy diffusivity on property distributions in the oceans. J. Mar. Res., 37, 515530, https://doi.org/10.1575/1912/10336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armi, L., 1979b: Reply to comments by C. Garrett. J. Geophys. Res., 84, 50975098, https://doi.org/10.1029/JC084iC08p05097.

  • Armi, L., and E. D’Asaro, 1980: Flow structures of the benthic ocean. J. Geophys. Res., 85, 469484, https://doi.org/10.1029/JC085iC01p00469

  • Baines, P. G., 1979: Observations of stratified flow past three-dimensional barriers. J. Geophys. Res., 84, 78347838, https://doi.org/10.1029/JC084iC12p07834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and A. J. G. Nurser, 2003: Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 18701872, https://doi.org/10.1175/1520-0485(2003)033<1870:EOSMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cael, B. B., and A. Mashayek, 2021: Log-skew-normality of ocean turbulence. Phys. Rev. Lett., 126, 224502, https://doi.org/10.1103/PhysRevLett.126.224502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., 2018: Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr., 48, 19952010, https://doi.org/10.1175/JPO-D-18-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimoli, L., C.-C. P. Caulfield, H. L. Johnson, D. P. Marshall, A. Mashayek, A. C. N. Garabato, and C. Vic, 2019: Sensitivity of deep ocean mixing to local internal tide breaking and mixing efficiency. Geophys. Res. Lett., 46, 14 62214 633, https://doi.org/10.1029/2019GL085056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clément, L., A. M. Thurnherr, and L. C. St. Laurent, 2017: Turbulent mixing in a deep fracture zone on the Mid-Atlantic Ridge. J. Phys. Oceanogr., 47, 18731896, https://doi.org/10.1175/JPO-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016: On the consumption of Antarctic bottom water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dell, R. W., 2013: Boundary layer dynamics and deep ocean mixing in Mid-Atlantic Ridge canyons. Ph.D. thesis, Massachusetts Institute of Technology, 163 pp., https://doi.org/10.1575/1912/5740.

    • Search Google Scholar
    • Export Citation
  • Dell, R. W., and L. Pratt, 2015: Diffusive boundary layers over varying topography. J. Fluid Mech., 769, 635653, https://doi.org/10.1017/jfm.2015.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, H. F., 2021: Control of the abyssal ocean overturning circulation by mixing-driven bottom boundary layers. Ph.D. thesis, Massachusetts Institute of Technology, 157 pp., https://doi.org/10.1575/1912/27424.

    • Search Google Scholar
    • Export Citation
  • Drake, H. F., R. Ferrari, and J. Callies, 2020: Abyssal circulation driven by near-boundary mixing: Water mass transformations and interior stratification. J. Phys. Oceanogr., 50, 22032226, https://doi.org/10.1175/JPO-D-19-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, H. F., X. Ruan, and R. Ferrari, 2022: Diapycnal displacement, diffusion, and distortion of tracers in the ocean. J. Phys. Oceanogr., 33213240, https://doi.org/10.1175/JPO-D-22-0010.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: What goes down must come up. Nature, 513, 179180, https://doi.org/10.1038/513179a.

  • Ferrari, R., and R. Plumb, 2003: Residual circulation in the ocean. Near-Boundary Processes and Their Parameterization: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 219–228, http://www.soest.hawaii.edu/PubServices/2003pdfs/Ferrari.pdf.

    • Crossref
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, https://doi.org/10.1175/2007JPO3788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1979: Comment on ‘Some evidence for boundary mixing in the deep ocean’ by Laurence Armi. J. Geophys. Res., 84, 5095, https://doi.org/10.1029/JC084iC08p05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1990: The role of secondary circulation in boundary mixing. J. Geophys. Res., 95, 31813188, https://doi.org/10.1029/JC095iC03p03181.

  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2011: Negative turbulent production during flow reversal in a stratified oscillating boundary layer on a sloping bottom. Phys. Fluids, 23, 101703, https://doi.org/10.1063/1.3651359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Is there a global scale ocean circulation? Eos, Trans. Amer. Geophys. Union, 67, 109110, https://doi.org/10.1029/EO067i009p00109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy resolving ocean models. J. Phys. Oceanogr., 20, 16341637, https://doi.org/10.1175/1520-0485(1990)020<1634:OPVMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 52495286, https://doi.org/10.1029/JC092iC05p05249.

  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, https://doi.org/10.1175/BAMS-86-11-1609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N., P. E. Biscaye, W. D. Gardner, and W. J. Schmitz Jr., 1982: On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40, 231263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and T. J. McDougall, 2020: Diapycnal Transport near a sloping bottom boundary. J. Phys. Oceanogr., 50, 32533266, https://doi.org/10.1175/JPO-D-20-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. de Lavergne, and T. J. McDougall, 2018: Ridges, seamounts, troughs, and bowls: Topographic control of the dianeutral circulation in the abyssal ocean. J. Phys. Oceanogr., 48, 861882, https://doi.org/10.1175/JPO-D-17-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. de Lavergne, and T. J. McDougall, 2019: Tracer transport within abyssal mixing layers. J. Phys. Oceanogr., 49, 26692695, https://doi.org/10.1175/JPO-D-19-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • Huang, R. X., and X. Jin, 2002: Deep circulation in the South Atlantic induced by bottom-intensified mixing over the midocean ridge. J. Phys. Oceanogr., 32, 11501164, https://doi.org/10.1175/1520-0485(2002)032<1150:DCITSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ijichi, T., L. S. Laurent, K. L. Polzin, and J. M. Toole, 2020: How variable is mixing efficiency in the abyss? Geophys. Res. Lett., 47, e2019GL086813, https://doi.org/10.1029/2019GL086813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, B. E., 2020: Finescale abyssal turbulence: Sources and modeling. Ph.D. thesis, Massachusetts Institute of Technology, 168 pp., https://dspace.mit.edu/handle/1721.1/128078.

    • Crossref
    • Export Citation
  • Kunze, E., 2017: The internal-wave-driven meridional overturning circulation. J. Phys. Oceanogr., 47, 26732689, https://doi.org/10.1175/JPO-D-16-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, https://doi.org/10.1175/JPO-D-11-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The Gravity Current Entrainment Climate Process Team. Bull. Amer. Meteor. Soc., 90, 657670, https://doi.org/10.1175/2008BAMS2667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., and P. B. Rhines, 1991: Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J. Fluid Mech., 223, 631, https://doi.org/10.1017/S0022112091001581.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic circumpolar current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., J. Gula, L. Baker, A. N. Garabato, L. Cimoli, and J. Riley, 2021: Mountains to climb: On the role of seamounts in upwelling of deep ocean water. Research Square, https://doi.org/10.21203/rs.3.rs-939198/v1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee wave–driven mixing. J. Phys. Oceanogr., 44, 900921, https://doi.org/10.1175/JPO-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, M. Y., M. M. Hall, L. C. S. Laurent, and N. G. Hogg, 2001: Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr., 31, 33313348, https://doi.org/10.1175/1520-0485(2001)031<3331:AMITBB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Naveira Garabato, A. C., and Coauthors, 2019: Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc. Natl. Acad. Sci. USA, 116, 13 23313 238, https://doi.org/10.1073/pnas.1904087116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarian, R. H., C. M. Burns, S. Legg, M. C. Buijsman, H. Kaur, and B. K. Arbic, 2021: On the magnitude of canyon-induced mixing. J. Geophys. Res. Oceans, 126, e2021JC017671, https://doi.org/10.1029/2021JC017671.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, https://doi.org/10.1175/2010JPO4522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, H. G., and J. Callies, 2022: Rapid spin up and spin down of flow along slopes. J. Phys. Oceanogr., 52, 579596, https://doi.org/10.1175/JPO-D-21-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1970: On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. Oceanogr. Abstr., 17, 435443, https://doi.org/10.1016/0011-7471(70)90058-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40, 16691688, https://doi.org/10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, https://doi.org/10.1175/JPO-2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, https://doi.org/10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., and T. J. McDougall, 2022: Mixing at the ocean’s bottom boundary. Ocean Mixing, M. Meredith, and A. Naveira Garabato, Eds., Elsevier, 145180, https://doi.org/10.1016/B978-0-12-821512-8.00014-1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. Toole, J. R. Ledwell, and R. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., B. Wang, Z. Wang, F. Thwaites, and A. J. Williams, 2021: Moored flux and dissipation estimates from the northern deepwater Gulf of Mexico. Fluids, 6, 237, https://doi.org/10.3390/fluids6070237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and J. A. Whitehead, 2008: Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere, Atmospheric and Oceanographic Sciences Library, Vol. 36, Springer, 592 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., and J. Callies, 2020: Mixing-driven mean flows and submesoscale eddies over mid-ocean ridge flanks and fracture zone canyons. J. Phys. Oceanogr., 50, 175195, https://doi.org/10.1175/JPO-D-19-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., A. F. Thompson, M. M. Flexas, and J. Sprintall, 2017: Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning. Nature Geosci., 10, 840845, https://doi.org/10.1038/ngeo3053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, H., P. D. Killworth, and J. R. Blundell, 1991: A two-dimensional model of boundary mixing. J. Geophys. Res., 96, 18 44718 474, https://doi.org/10.1029/91JC01917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spingys, C. P., A. C. N. Garabato, S. Legg, K. L. Polzin, E. P. Abrahamsen, C. E. Buckingham, A. Forryan, and E. E. Frajka-Williams, 2021: Mixing and transformation in a deep western boundary current: A case study. J. Phys. Oceanogr., 51, 12051222, https://doi.org/10.1175/JPO-D-20-0132.1.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1958: The abyssal circulation. Deep-Sea Res., 5, 8082, https://doi.org/10.1016/S0146-6291(58)80014-4.

  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H., M. Johnson, and R. Fleming, 1942: The Oceans: Their Physics, Chemistry and General Biology. Prentice-Hall, 1087 pp.

  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226, https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1920: I. Tidal friction in the Irish Sea. Philos. Trans. Roy. Soc., A220, 133, https://doi.org/10.1098/rsta.1920.0001.

  • Thompson, L., and G. C. Johnson, 1996: Abyssal currents generated by diffusion and geothermal heating over rises. Deep-Sea Res. I, 43, 193211, https://doi.org/10.1016/0967-0637(96)00095-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Current and temperature variability on the continental slope. Philos. Trans. Roy. Soc., A323, 471517, https://doi.org/10.1098/rsta.1987.0100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 484 pp.

  • Thurnherr, A. M., 2000: Hydrography and flow in the rift valley of the Mid-Atlantic Ridge. Ph.D. thesis, University of Southampton, 157 pp., https://eprints.soton.ac.uk/42174/.

    • Crossref
    • Export Citation
  • Thurnherr, A. M., and K. G. Speer, 2003: Boundary mixing and topographic blocking on the mid-Atlantic ridge in the South Atlantic. J. Phys. Oceanogr., 33, 848862, https://doi.org/10.1175/1520-0485(2003)33<848:BMATBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., and Coauthors, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35, 13701381, https://doi.org/10.1175/JPO2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., L. Clément, L. S. Laurent, R. Ferrari, and T. Ijichi, 2020: Transformation and upwelling of bottom water in fracture zone valleys. J. Phys. Oceanogr., 50, 715726, https://doi.org/10.1175/JPO-D-19-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., 2007: Temporal characteristics of abyssal finescale motions above rough bathymetry. J. Phys. Oceanogr., 37, 409427, https://doi.org/10.1175/JPO2988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozer, B., D. T. Sandwell, W. H. F. Smith, C. Olson, J. R. Beale, and P. Wessel, 2019: Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci., 6, 18471864, https://doi.org/10.1029/2019EA000658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1986: On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16, 680693, https://doi.org/10.1175/1520-0485(1986)016<0680:OTROIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2018: High-resolution observations of internal wave turbulence in the deep ocean. The Ocean in Motion: Circulation, Waves, Polar Oceanography, M. G. Velarde, R. Y. Tarakanov, and A. V. Marchenko, Eds., Springer, 127146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voet, G., J. B. Girton, M. H. Alford, G. S. Carter, J. M. Klymak, and J. B. Mickett, 2015: Pathways, volume transport, and mixing of abyssal water in the Samoan passage. J. Phys. Oceanogr., 45, 562588, https://doi.org/10.1175/JPO-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and J. R. Ledwell, 1988: Purposefully released tracers. Philos. Trans. Roy. Soc., A325, 189200, https://doi.org/10.1098/rsta.1988.0051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., 2021: Best practices for comparing ocean turbulence measurements across spatiotemporal scales. J. Atmos. Oceanic Technol., 38, 837841, https://doi.org/10.1175/JTECH-D-20-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and L. Armi, 2012: Hydraulic control of continuously stratified flow over an obstacle. J. Fluid Mech., 700, 502513, https://doi.org/10.1017/jfm.2012.157.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res. Oceanogr. Abstr., 17, 293301, https://doi.org/10.1016/0011-7471(70)90022-7.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 809 809 32
Full Text Views 396 396 27
PDF Downloads 484 484 37

Dynamics of Eddying Abyssal Mixing Layers over Sloping Rough Topography

Henri F. DrakeaMIT–WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts

Search for other papers by Henri F. Drake in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0135-0814
,
Xiaozhou RuanbMassachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Xiaozhou Ruan in
Current site
Google Scholar
PubMed
Close
,
Jörn CalliescCalifornia Institute of Technology, Pasadena, California

Search for other papers by Jörn Callies in
Current site
Google Scholar
PubMed
Close
,
Kelly OgdendWestern University, London, Ontario, Canada

Search for other papers by Kelly Ogden in
Current site
Google Scholar
PubMed
Close
,
Andreas M. ThurnherreLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Andreas M. Thurnherr in
Current site
Google Scholar
PubMed
Close
, and
Raffaele FerrarieLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed water-mass transformations are dominated by rough topography “hotspots,” where the bottom enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin bottom boundary layer (BBL). These water-mass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downward diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model that approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the nonlocal coupling to the basin-scale circulation.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Oceanic Flow–Topography Interations Special Collection.

Dr. Drake’s current affiliation is Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Corresponding author: Henri F. Drake, henrifdrake@gmail.com

Abstract

The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed water-mass transformations are dominated by rough topography “hotspots,” where the bottom enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin bottom boundary layer (BBL). These water-mass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downward diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model that approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the nonlocal coupling to the basin-scale circulation.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Oceanic Flow–Topography Interations Special Collection.

Dr. Drake’s current affiliation is Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Corresponding author: Henri F. Drake, henrifdrake@gmail.com

Supplementary Materials

    • Supplemental Materials (ZIP 7.77 MB)
Save