• Abernathey, R. P., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alberty, M. S., S. Billheimer, M. M. Hamann, C. Y. Ou, V. Tamsitt, A. J. Lucas, and M. H. Alford, 2017: A reflecting, steepening, and breaking internal tide in a submarine canyon. J. Geophys. Res. Oceans, 122, 68726882, https://doi.org/10.1002/2016JC012583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. A., and C. H. Gibson, 1987: Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J. Phys. Oceanogr., 17, 18171836, https://doi.org/10.1175/1520-0485(1987)017<1817:STITSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean . J. Geophys. Res., 84, 25032517, https://doi.org/10.1029/JC084iC05p02503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cael, B. B., and A. Mashayek, 2021: Log-skew-normality of ocean turbulence. Phys. Rev. Lett., 126, 224502, https://doi.org/10.1103/PhysRevLett.126.224502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., 2018: Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr., 48, 19952010, https://doi.org/10.1175/JPO-D-18-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clément, L., A. M. Thurnherr, and L. C. St. Laurent, 2017: Turbulent mixing in a deep fracture zone on the Mid-Atlantic Ridge. J. Phys. Oceanogr., 47, 18731896, https://doi.org/10.1175/JPO-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016a: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016b: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dematteis, G., and Y. V. Lvov, 2021: Downscale energy fluxes in scale-invariant oceanic internal wave turbulence. J. Fluid Mech., 915, A129, https://doi.org/10.1017/jfm.2021.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23, 22542264, https://doi.org/10.1175/1520-0485(1993)023<2254:MFADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, https://doi.org/10.1029/JC087iC12p09601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, H. F., 2021: Control of the abyssal ocean overturning circulation by mixing-driven bottom boundary layers. Ph.D. thesis, Massachusetts Institute of Technology, 157 pp., https://doi.org/10.1575/1912/27424.

    • Search Google Scholar
    • Export Citation
  • Drake, H. F., R. Ferrari, and J. Callies, 2020: Abyssal circulation driven by near-boundary mixing: Water mass transformations and interior stratification. J. Phys. Oceanogr., 50, 22032226, https://doi.org/10.1175/JPO-D-19-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, H. F., X. Ruan, J. Callies, K. Ogden, A. M. Thurnherr, and R. Ferrari, 2022: Dynamics of eddying abyssal mixing layers over rough topography. J. Phys. Oceanogr., 31993219, https://doi.org/10.1175/JPO-D-22-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1991: Marginal mixing theories. Atmos.–Ocean, 29, 313339, https://doi.org/10.1080/07055900.1991.9649407.

  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Astrophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman Layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamann, M. M., M. H. Alford, A. J. Lucas, A. F. Waterhouse, and G. Voet, 2021: Turbulence driven by reflected internal tides in a supercritical submarine canyon. J. Phys. Oceanogr., 51, 591609, https://doi.org/10.1175/JPO-D-20-0123.1.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N., P. E. Biscaye, W. D. Gardner, and W. J. Schmitz Jr., 1982: On the transport and modification of Antarctic bottom water in the Vema Channel. J. Mar. Res., 40, 231263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and T. J. McDougall, 2020: Diapycnal transport near a sloping bottom boundary. J. Phys. Oceanogr., 50, 32533266, https://doi.org/10.1175/JPO-D-20-0066.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. de Lavergne, and T. J. McDougall, 2019: Tracer transport within abyssal mixing layers. J. Phys. Oceanogr., 49, 26692695, https://doi.org/10.1175/JPO-D-19-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtermann, P. L., L. Umlauf, T. Tanhua, O. Schmale, G. Rehder, and J. J. Waniek, 2012: The Baltic sea tracer release experiment: 1. Mixing rates. J. Geophys. Res., 117, C01021, https://doi.org/10.1029/2011JC007439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. Hamman, 2017: Xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • Huang, R. X., and X. Jin, 2002: Deep circulation in the South Atlantic induced by bottom-intensified mixing over the midocean ridge. J. Phys. Oceanogr., 32, 11501164, https://doi.org/10.1175/1520-0485(2002)032<1150:DCITSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., and A. J. Watson, 1991: The Santa Monica basin tracer experiment: A study of diapycnal and isopycnal mixing. J. Geophys. Res., 96, 86958718, https://doi.org/10.1029/91JC00102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., and B. M. Hickey, 1995: Evidence for enhanced boundary mixing in the Santa Monica basin. J. Geophys. Res., 100, 20 66520 679, https://doi.org/10.1029/94JC01182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, https://doi.org/10.1029/98JC01738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., T. F. Duda, M. A. Sundermeyer, and H. E. Seim, 2004: Mixing in a coastal environment: 1. A view from dye dispersion. J. Geophys. Res., 109, C10013, https://doi.org/10.1029/2003JC002194.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., R. He, Z. Xue, S. F. DiMarco, L. J. Spencer, and P. Chapman, 2016: Dispersion of a tracer in the deep Gulf of Mexico. J. Geophys. Res. Oceans, 121, 11101132, https://doi.org/10.1002/2015JC011405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lele, R., and Coauthors, 2021: Abyssal heat budget in the southwest Pacific basin. J. Phys. Oceanogr., 51, 33173333, https://doi.org/10.1175/JPO-D-21-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Mackay, N., J. R. Ledwell, M.-J. Messias, A. C. N. Garabato, J. A. Brearley, A. J. S. Meijers, D. C. Jones, and A. J. Watson, 2018: Diapycnal mixing in the Southern Ocean diagnosed using the DIMES tracer and realistic velocity fields. J. Geophys. Res. Oceans, 123, 26152634, https://doi.org/10.1002/2017JC013536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, https://doi.org/10.1016/S0967-0637(98)00082-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, 2017: Topographic enhancement of vertical turbulent mixing in the Southern Ocean. Nat. Commun., 8, 14197, https://doi.org/10.1038/ncomms14197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. P. Caulfield, and M. H. Alford, 2021: Goldilocks mixing in oceanic shear-induced turbulent overturns. J. Fluid Mech., 928, A1, https://doi.org/10.1017/jfm.2021.740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarian, R. H., C. M. Burns, S. Legg, M. C. Buijsman, H. Kaur, and B. K. Arbic, 2021: On the magnitude of canyon-induced mixing. J. Geophys. Res. Oceans, 126, e2021JC017671, https://doi.org/10.1029/2021JC017671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, https://doi.org/10.1175/2010JPO4522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, https://doi.org/10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., and T. J. McDougall, 2022: Mixing at the ocean’s bottom boundary. Ocean Mixing, M. Meredith and A. Naveira Garabato, Eds., Elsevier, 145180, https://doi.org/10.1016/B978-0-12-821512-8.00014-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the spatial variability abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., B. Wang, Z. Wang, F. Thwaites, and A. J. Williams, 2021: Moored flux and dissipation estimates from the northern deepwater Gulf of Mexico. Fluids, 6, 237, https://doi.org/10.3390/fluids6070237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., and J. Callies, 2020: Mixing-driven mean flows and submesoscale eddies over mid-ocean ridge flanks and fracture zone canyons. J. Phys. Oceanogr., 50, 175195, https://doi.org/10.1175/JPO-D-19-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., and R. Ferrari, 2021: Diagnosing diapycnal mixing from passive tracers. J. Phys. Oceanogr., 51, 757767, https://doi.org/10.1175/JPO-D-20-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, https://doi.org/10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spingys, C. P., A. C. N. Garabato, S. Legg, K. L. Polzin, E. P. Abrahamsen, C. E. Buckingham, A. Forryan, and E. E. Frajka-Williams, 2021: Mixing and transformation in a deep western boundary current: A case study. J. Phys. Oceanogr., 51, 12051222, https://doi.org/10.1175/JPO-D-20-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic tracer release experiment. J. Phys. Oceanogr., 29, 14041424, https://doi.org/10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1959: On the abyssal circulation of the world ocean — II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217233, https://doi.org/10.1016/0146-6313(59)90075-9.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., E. A. Terray, J. R. Ledwell, A. G. Cunningham, P. E. LaRocque, J. Banic, and W. J. Lillycrop, 2007: Three-dimensional mapping of fluorescent dye using a scanning, depth-resolving airborne lidar. J. Atmos. Oceanic Technol., 24, 10501065, https://doi.org/10.1175/JTECH2027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1922: Diffusion by continuous movements. Proc. London Math. Soc., s2–20, 196212, https://doi.org/10.1112/plms/s2-20.1.196.

  • Taylor, G. I., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, A219, 186203, https://royalsocietypublishing.org/doi/10.1098/rspa.1953.0139.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., S. M. B. Kops, C. P. Caulfield, and P. F. Linden, 2019: Testing the assumptions underlying ocean mixing methodologies using direct numerical simulations. J. Phys. Oceanogr., 49, 27612779, https://doi.org/10.1175/JPO-D-19-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc., A286, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., L. C. St. Laurent, K. G. Speer, J. M. Toole, and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35, 13701381, https://doi.org/10.1175/JPO2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., L. Clément, L. S. Laurent, R. Ferrari, and T. Ijichi, 2020: Transformation and upwelling of bottom water in fracture zone valleys. J. Phys. Oceanogr., 50, 715726, https://doi.org/10.1175/JPO-D-19-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozer, B., D. T. Sandwell, W. H. F. Smith, C. Olson, J. R. Beale, and P. Wessel, 2019: Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci., 6, 18471864, https://doi.org/10.1029/2019EA000658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D., C. B. Whalen, T. W. N. Haine, A. F. Waterhouse, A. T. Nguyen, A. Bigdeli, M. Mazloff, and P. Heimbach, 2022: Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate. Ocean Sci., 18, 729759, https://doi.org/10.5194/os-18-729-2022.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and Coauthors, 2014: Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr., 44, 25932616, https://doi.org/10.1175/JPO-D-13-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., M. Dengler, T. S. Tanhua, and M. Freund, 2020: Mixing and upwelling dynamics along the continental slope off Peru inferred from tracer release, hydrographic and microstructure measurements. Ocean Sciences Meeting, San Diego, CA, Amer. Geophys. Union, PS53A-03, https://agu.confex.com/agu/osm20/meetingapp.cgi/Paper/651229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., G. Flierl, R. Ferrari, G. Voet, G. S. Carter, M. H. Alford, and J. B. Girton, 2019: Squeeze dispersion and the effective diapycnal diffusivity of oceanic tracers. Geophys. Res. Lett., 46, 53785386, https://doi.org/10.1029/2019GL082458.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and J. R. Ledwell, 1988: Purposefully released tracers. Philos. Trans. Roy. Soc. London, A325, 189200, https://doi.org/10.1098/rsta.1988.0051.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., J. R. Ledwell, M.-J. Messias, B. A. King, N. Mackay, M. P. Meredith, B. Mills, and A. C. Naveira Garabato, 2013: Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature, 501, 408411, https://doi.org/10.1038/nature12432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., 2021: Best practices for comparing ocean turbulence measurements across spatiotemporal scales. J. Atmos. Oceanic Technol., 38, 837841, https://doi.org/10.1175/JTECH-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 824 824 65
Full Text Views 183 183 17
PDF Downloads 211 211 26

Diapycnal Displacement, Diffusion, and Distortion of Tracers in the Ocean

Henri F. DrakeaMIT–WHOI Joint Program in Oceanography, Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts

Search for other papers by Henri F. Drake in
Current site
Google Scholar
PubMed
Close
,
Xiaozhou RuanbDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Xiaozhou Ruan in
Current site
Google Scholar
PubMed
Close
, and
Raffaele FerraribDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in situ turbulence suggest that mixing is bottom enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer release experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in situ diffusion as well as an additional nonlinear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (<20%), especially compared to the O(1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Ocean Turbulence Special Collection.

This article is included in the Oceanic Flow–Topography Interations Special Collection.

Drake’s current affiliation: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey.

Corresponding author: Henri F. Drake, henrifdrake@gmail.com

Abstract

Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in situ turbulence suggest that mixing is bottom enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer release experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in situ diffusion as well as an additional nonlinear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (<20%), especially compared to the O(1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Ocean Turbulence Special Collection.

This article is included in the Oceanic Flow–Topography Interations Special Collection.

Drake’s current affiliation: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey.

Corresponding author: Henri F. Drake, henrifdrake@gmail.com
Save