• Blanc, T. V., 1985: Variation of bulk-derived surface flux, stability and roughness results due to the use of different transfer coefficient regimes. J. Phys. Oceanogr., 15, 650669, https://doi.org/10.1175/1520-0485(1985)015<0650:VOBDSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., X. Zeng, and S. Anderson, 2002: Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res., 107, 3141, https://doi.org/10.1029/2001JC000992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and E. D. Maloney, 2020: Atmospheric mixed layer convergence from observed MJO sea surface temperature anomalies. J. Climate, 33, 547558, https://doi.org/10.1175/JCLI-D-19-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., E. D. Skyllingstad, P. Zuidema, and A. S. Chandra, 2017: Cold pools and their influence on the tropical marine boundary layer. J. Atmos. Sci., 74, 11491168, https://doi.org/10.1175/JAS-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörenkämper, M., M. Optis, A. Monahan, and G. Steinfeld, 2015: On the offshore advection of boundary-layer structures and the influence on offshore wind conditions. Bound.-Layer Meteor., 155, 459482, https://doi.org/10.1007/s10546-015-0008-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2006: Turbulent bulk transfer coefficients and ozone deposition velocity in the international consortium for atmospheric research into transport and transformation. J. Geophys. Res., 111, D23S20, https://doi.org/10.1029/2006JD007597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., and K. F. Schmitt, 1976: Parameterization of air–sea interfacial fluxes of sensible heat and moisture by the bulk aerodynamic formulas. J. Phys. Oceanogr., 6, 801809, https://doi.org/10.1175/1520-0485(1976)006<0801:POASIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., and Coauthors, 1991: Air–sea fluxes and surface layer turbulence around a sea-surface temperature front. J. Geophys. Res., 96, 85938609, https://doi.org/10.1029/90JC02062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1987: The stably stratified internal boundary layer for steady and diurnally varying offshore flow. Bound.-Layer Meteor., 38, 369394, https://doi.org/10.1007/BF00120853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., and B. F. Ryan, 1989: The structure of the stably stratified internal boundary layer in offshore flow over the sea. Bound.-Layer Meteor., 47, 1740, https://doi.org/10.1007/BF00122320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, P. O. G. Persson, E. L. Andreas, and P. S. Guest, 2005: Stable boundary-layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, https://doi.org/10.1007/s10546-004-2729-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., L. Bariteau, C. W. Fairall, J. E. Hare, D. Helmig, J. Hueber, and E. K. Lang, 2011: Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J. Geophys. Res., 116, D13110, https://doi.org/10.1029/2010JD015502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutiérrez-Loza, L., M. B. Wallin, E. Sahlée, E. Nilsson, H. W. Bange, A. Kock, and A. Rutgersson, 2019: Measurement of air–sea methane fluxes in the Baltic Sea using the eddy covariance method. Front. Earth Sci., 7, 93, https://doi.org/10.3389/feart.2019.00093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., and Coauthors, 2008: Momentum fluxes and wind gradients in the marine boundary layer—A multi-platform study. Boreal Environ. Res., 13, 475502.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including molecular constraints at the surface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and C. K. Thomas, 2016: Surface stress with non-stationary weak winds and stable stratification. Bound.-Layer Meteor., 159, 321, https://doi.org/10.1007/s10546-015-0111-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and T. Hristov, 2017: Is the influence of stability on the sea surface heat flux important? J. Phys. Oceanogr., 47, 689699, https://doi.org/10.1175/JPO-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Edson, J. Sun, J. Højstrup, J. Hare, and J. M. Wilczak, 1998: Heat flux in the coastal zone. Bound.-Layer Meteor., 86, 421446, https://doi.org/10.1023/A:1000784219817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, E. L. Andreas, and D. Khelif, 2012: Sensible heat flux in near-neutral conditions over the sea. J. Phys. Oceanogr., 42, 11341142, https://doi.org/10.1175/JPO-D-11-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortiz-Suslow, D. G., J. Kalogiros, R. Yamaguchi, and Q. Wang, 2021: An evaluation of the constant flux layer in the atmospheric flow above the wavy air–sea interface. J. Geophys. Res. Atmos., 126, e2020JD032834, https://doi.org/10.1029/2020JD032834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., 1997: Analysis of sea-surface drag parameterizations in open ocean conditions. Bound.-Layer Meteor., 82, 355377, https://doi.org/10.1023/A:1000289415922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., D. W. Johnson, and C. A. Friehe, 1995: Stable internal boundary layer over a coastal sea. Part I: Airborne measurements of the mean and turbulence structure. J. Atmos. Sci., 52, 667683, https://doi.org/10.1175/1520-0469(1995)052<0667:TSIBLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutgersson, A., A.-S. Smedman, and A. Omstedt, 2001: Measured and simulated latent and sensible heat fluxes at two marine sites in the Baltic Sea. Bound.-Layer Meteor., 99, 5384, https://doi.org/10.1023/A:1018799227854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutgersson, A., and Coauthors, 2020: Using land-based stations for air–sea interaction studies. Tellus, 72A, 1697601, https://doi.org/10.1080/16000870.2019.1697601.

    • Search Google Scholar
    • Export Citation
  • Sahlée, E., A.-S. Smedman, U. Högström, and A. Rutgersson, 2008: Re-evaluation of the bulk exchange coefficient for humidity at sea during unstable and neutral conditions. J. Phys. Oceanogr., 38, 257272, https://doi.org/10.1175/2007JPO3754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., L. W. O’Neill, D. B. Chelton, E. D. Skyllingstad, P. L. Barbour, and S. M. Durski, 2020: Surface stress and atmospheric boundary layer response to mesoscale SST structure in coupled simulations of the northern California Current System. Mon. Wea. Rev., 148, 259287, https://doi.org/10.1175/MWR-D-19-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., R. M. Samelson, L. Mahrt, and P. Barbour, 2005: A numerical modeling study of warm offshore flow over cool water. Mon. Wea. Rev., 133, 345361, https://doi.org/10.1175/MWR-2845.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., D. Vickers, L. Mahrt, and R. M. Samelson, 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219237, https://doi.org/10.1007/s10546-006-9127-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., S. de Zoecke, and L. W. O’Neill, 2019: Modeling the transient response of tropical convection to mesoscale SST variations. J. Atmos. Sci., 76, 12271244, https://doi.org/10.1175/JAS-D-18-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, H. Bergström, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air–sea interaction during swell conditions. J. Geophys. Res., 104, 25 83325 851, https://doi.org/10.1029/1999JC900213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, E. Sahlée, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66, 27472763, https://doi.org/10.1175/2009JAS2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, E. Sahlée, and C. Johansson, 2007: Critical re-evaluation of the bulk transfer coefficient for sensible heat over the ocean during unstable and neutral conditions. Quart. J. Roy. Meteor. Soc., 133, 227250, https://doi.org/10.1002/qj.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sproson, D., and E. Sahlée, 2014: Modelling the impact of Baltic Sea upwelling on the atmospheric upwelling boundary layer. Tellus, 66A, 24041, https://doi.org/10.3402/tellusa.v66.24041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. Vandemark, L. Mahrt, D. Vickers, T. Crawford, and C. Vogel, 2001: Momentum transfer over the coastal zone. J. Geophys. Res., 106, 12 43712 448, https://doi.org/10.1029/2000JD900696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X.-M., Z.-L. Zhu, X.-F. Wen, G.-F. Yuan, and G.-R. Yu, 2006: The impact of averaging period on eddy fluxes observed at ChinaFLUX sites. Agric. For. Meteor., 137, 188193, https://doi.org/10.1016/j.agrformet.2006.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thum, N., S. Esbensen, D. Chelton, and M. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15, 33613378, https://doi.org/10.1175/1520-0442(2002)015<3361:ASHEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veron, F., W. K. Melville, and L. Lenain, 2008: Wave-coherent air–sea heat flux. J. Phys. Oceanogr., 38, 788802, https://doi.org/10.1175/2007JPO3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., L. Mahrt, J. Sun, and T. Crawford, 2001: Structure of offshore flow. Mon. Wea. Rev., 129, 12511258, https://doi.org/10.1175/1520-0493(2001)129<1251:SOOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wessel, P., J. F. Luis, L. Uieda, R. Scharroo, F. Wobbe, W. H. F. Smith, and D. Tian, 2019: The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst., 20, 55565564, https://doi.org/10.1029/2019GC008515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 514 516 19
Full Text Views 118 118 6
PDF Downloads 124 124 11

The Sea Surface Heat Flux at a Coastal Site

L. MahrtaNorthwest Research Associates, Corvallis, Oregon

Search for other papers by L. Mahrt in
Current site
Google Scholar
PubMed
Close
,
Erik NilssonbDepartment of Earth Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Erik Nilsson in
Current site
Google Scholar
PubMed
Close
, and
Anna RutgerssonbDepartment of Earth Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Anna Rutgersson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We analyze approximately four years of heat-flux measurements at two levels, profiles of air temperature, and multiple measurements of the water temperature collected at a coastal zone site. Our analysis considers underestimation of the sea surface flux resulting from vertical divergence of the heat flux between the surface and the lowest flux level. We examine simple relationships of the heat flux to the wind speed and stratification and the potential influence of fetch and temperature advection. The fetch ranges from about 4 to near 400 km. For a given wind-direction sector, the transfer coefficient varies only slowly with increasing instability but decreases significantly with increasing stability. The intention here is not to recommend a new parameterization but rather to establish relationships that underlie the bulk formula that could lead to assessments of uncertainty and improvement of the bulk formula.

Significance Statement

The behavior of surface heat fluxes in the coastal zone is normally more complex than over the open ocean but has a large impact on human activity. Our study examines extensive flux measurements on a tower in the Baltic Sea that allows partitioning of the fluxes according to wind direction without seriously depleting the data for a given wind-direction sector. Because some of the normal assumptions for the usual parameterization are not met, our study examines relationships behind the parameterization of the surface fluxes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: L. Mahrt, mahrt@nwra.com

Abstract

We analyze approximately four years of heat-flux measurements at two levels, profiles of air temperature, and multiple measurements of the water temperature collected at a coastal zone site. Our analysis considers underestimation of the sea surface flux resulting from vertical divergence of the heat flux between the surface and the lowest flux level. We examine simple relationships of the heat flux to the wind speed and stratification and the potential influence of fetch and temperature advection. The fetch ranges from about 4 to near 400 km. For a given wind-direction sector, the transfer coefficient varies only slowly with increasing instability but decreases significantly with increasing stability. The intention here is not to recommend a new parameterization but rather to establish relationships that underlie the bulk formula that could lead to assessments of uncertainty and improvement of the bulk formula.

Significance Statement

The behavior of surface heat fluxes in the coastal zone is normally more complex than over the open ocean but has a large impact on human activity. Our study examines extensive flux measurements on a tower in the Baltic Sea that allows partitioning of the fluxes according to wind direction without seriously depleting the data for a given wind-direction sector. Because some of the normal assumptions for the usual parameterization are not met, our study examines relationships behind the parameterization of the surface fluxes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: L. Mahrt, mahrt@nwra.com
Save