• Babu, M. T., Y. V. B. Sarma, V. S. N. Murthy, and P. Vethamony, 2003: On the circulation in the Bay of Bengal during northern spring inter-monsoon (March–April 1987). Deep-Sea Res. II, 5, 855865, https://doi.org/10.1016/S0967-0645(02)00609-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatterjee, A., D. Shankar, J. P. McCreary, P. N. Vinayachandran, and A. Mukherjee, 2017: Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal. J. Geophys. Res. Oceans, 122, 32003218, https://doi.org/10.1002/2016JC012300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Li, Q. Xie, and D. Wang, 2018: Origins of eddy kinetic energy in the Bay of Bengal. J. Geophys. Res. Oceans, 123, 20972115, https://doi.org/10.1002/2017JC013455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, X., S.-P. Xie, J. P. McCreary, Y. Qi, and Y. Du, 2013: Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 816830, https://doi.org/10.1002/jgrc.20075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, X., J. P. McCreary, B. Qiu, Y. Qi, Y. Du, and X. Chen, 2018: Dynamics of eddy generation in the central Bay of Bengal. J. Geophys. Res. Oceans, 123, 68616875, https://doi.org/10.1029/2018JC014100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullen, K. E., and E. L. Shroyer, 2019: Seasonality and interannual variability of the Sri Lanka dome. Deep Sea Res. II, 168, 104642, https://doi.org/10.1016/j.dsr2.2019.104642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandapat, S., and A. Chakraborty, 2016: Mesoscale eddies in the Western Bay of Bengal as observed from satellite altimetry in 1993–2014: Statistical characteristics, variability and three-dimensional properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 50445054, https://doi.org/10.1109/JSTARS.2016.2585179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flatau, M. K., P. J. Flatau, J. Schmidt, and G. N. Kiladis, 2003: Delayed onset of the 2002 Indian monsoon. Geophys. Res. Lett., 30, 1768, https://doi.org/10.1029/2003GL017434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17, 12631271, https://doi.org/10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, https://doi.org/10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157174, https://doi.org/10.1175/JAS3830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. A. Francis, and P. N. Vinayachandran, 2019: Summer monsoon of 2019: Understanding the performance so far and speculating about the rest of the season. Curr. Sci., 117, 783793, https://doi.org/10.18520/cs/v117/i5/783-793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., N. P. Klingaman, C. A. DeMott, and P.-C. Hsu, 2019: Diagnosing ocean feedbacks to the BSISO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 124, 146170, https://doi.org/10.1029/2018JD029303.

    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., M. Ravichandran, M. J. McPhaden, and R. R. Rao, 2011: Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. J. Geophys. Res., 116, C03009, https://doi.org/10.1029/2010JC006657.

    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., M. Ravichandran, and W. Han, 2013: Observed intraseasonal thermocline variability in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 33363349, https://doi.org/10.1002/jgrc.20245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., E. Shroyer, and V. S. N. Murty, 2017: An intrathermocline eddy and a tropical cyclone in the Bay of Bengal. Sci. Rep., 7, 46218, https://doi.org/10.1038/srep46218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K. Lau and D. E. Waliser, Eds., Springer, 19–61, https://doi.org/10.1007/3-540-27250-X_2.

    • Crossref
    • Export Citation
  • Goswami, B. N., D. Sengupta, and G. S. Kumar, 1998: Intraseasonal oscillations and interannual variability of surface winds over the Indian monsoon region. Proc. Indian Acad. Sci., Earth Planet. Sci., 107, 4564, https://doi.org/10.1007/BF02842260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, https://doi.org/10.1029/2002GL016734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinsted, A., 2021: Cross wavelet and wavelet coherence. GitHub, https://github.com/grinsted/wavelet-coherence.

  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561566, https://doi.org/10.5194/npg-11-561-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, A., and J. Morlet, 1984: Decomposition of Hardy functions into square integrable wavelet of constant shape. SIAM J. Math. Anal., 15, 723736, https://doi.org/10.1137/0515056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, P., E. Firing, J. Hummon, A. L. Gordon, and J. C. Kindle, 1998: Bay of Bengal currents during the northeast monsoon. Geophys. Res. Lett., 25, 27692772, https://doi.org/10.1029/98GL52115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708728, https://doi.org/10.1175/JPO2725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary Jr., D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, https://doi.org/10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W. Q., D. M. Lawrence, and P. J. Webster, 2001: Dynamical response of equatorial Indian Ocean to intraseasonal winds: Zonal flow. Geophys. Res. Lett., 28, 42154218, https://doi.org/10.1029/2001GL013701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443, https://doi.org/10.1175/2010JTECHO812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and J. K. Brewster, 2016: Observed air-sea interactions in tropical cyclone Isaac over loop current mesoscale eddy features. Dyn. Atmos. Oceans, 76, 306324, https://doi.org/10.1016/j.dynatmoce.2016.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 16, 29232942, https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., A. Kulkarni, S. S. Sabade, J. V. Revadekar, S. K. Patwardhan, and J. R. Kulkarni, 2004: Intra-seasonal oscillations during monsoon 2002 and 2003. Curr. Sci., 87, 325331.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32, 1526, https://doi.org/10.3402/tellusa.v32i1.10476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., S. Jana, R. Krishnamurti, V. Kumar, R. Deepa, F. Papa, M. A. Bourassa, and M. M. Ali, 2017: Monsoonal intraseasonal oscillations in the ocean heat content over the surface layers of the Bay of Bengal. J. Mar. Syst., 167, 1932, https://doi.org/10.1016/j.jmarsys.2016.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurien, P., M. Ikeda, and V. K. Valsala, 2010: Mesoscale variability along the east coast of India in spring as revealed from satellite data and OGCM simulations. J. Oceanogr., 66, 273289, https://doi.org/10.1007/s10872-010-0024-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laxague, N. J., B. K. Haus, D. G. Ortiz-Suslow, and H. C. Graber, 2018: Quantifying highly variable air–sea momentum flux using wavelet analysis. J. Atmos. Oceanic Technol., 35, 18491863, https://doi.org/10.1175/JTECH-D-18-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R., F. Wolk, J. Hancyck, and K. Black, 2015: Hub-height time series measurements of velocity and dissipation of turbulence kinetic energy in a tidal channel. IEEE/OES 11th Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, Institute of Electrical and Electronics Engineers, 1–5, https://doi.org/10.1109/CWTM.2015.7098143.

    • Crossref
    • Export Citation
  • Luecke, C. A., H. W. Wijesekera, E. Jarosz, D. W. Wang, J. C. Wesson, S. U. P. Jinadasa, H. J. S. Fernando, and W. J. Teague, 2021: Observations of eddy-modulated turbulent mixing in the southern Bay of Bengal. J. Phys. Oceanogr., 51, 21492166, https://doi.org/10.1175/JPO-D-20-0280.1.

    • Search Google Scholar
    • Export Citation
  • Mallat, S. G., 1989: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674693, https://doi.org/10.1109/34.192463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary Jr., T. G. Jensen, D. Sengupta, and R. Senan, 2006: Dynamics of biweekly oscillations in the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 827846, https://doi.org/10.1175/JPO2897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohanty, S., R. Nadimpalli, U. C. Mohanty, M. Mrutyunjay, A. Sherma, A. K. Das, and S. Sil, 2020: Quasi-operational forecast guidance of extremely severe cyclonic storm Fani over the Bay of Bengal using high-resolution mesoscale models. Meteor. Atmos. Phys., 133, 331348, https://doi.org/10.1007/s00703-020-00751-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D. W., 1968: Planetary-gravity waves in an equatorial ocean. Ph.D. thesis, Harvard University, 207 pp.

  • Morlet, J., G. Arens, E. Fourgeau, and D. Giard, 1982: Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics, 47, 203221, https://doi.org/10.1190/1.1441328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010: Dynamics of zonal current variations associated with the Indian Ocean dipole. J. Geophys. Res., 115, C11026, https://doi.org/10.1029/2010JC006423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirro, A., H. W. Wijesekera, E. Jarosz, and H. J. S. Fernando, 2020a: Dynamics of intraseasonal oscillations in the Bay of Bengal during summer monsoons captured by mooring observations. Deep-Sea Res. II, 172, 104718, https://doi.org/10.1016/j.dsr2.2019.104718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirro, A., H. J. S. Fernando, H. W. Wijesekera, T. G. Jensen, L. R. Centurioni, and S. U. P. Jinadasa, 2020b: Eddies and currents in the Bay of Bengal during summer monsoons. Deep-Sea Res. II, 172, 104728, https://doi.org/10.1016/j.dsr2.2019.104728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasanna Kumar, S., and Coauthors, 2004: Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys. Res. Lett., 31, L07309, https://doi.org/10.1029/2003GL019274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratna, S. B., A. Cherchi, T. J. Osborn, M. Joshi, and U. Uppara, 2021: The extreme positive Indian Ocean dipole of 2019 and associated Indian summer monsoon rainfall response, Geophys. Res. Lett., 48, e2020GL091497, https://doi.org/10.1029/2020GL091497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Franks, A., E. C. Kent, A. J. Matthews, B. G. M. Webber, S. C. Peatman, and P. N. Vinayachandran, 2018: Intraseasonal variability of air-sea fluxes over the Bay of Bengal during the southwest monsoon. J. Climate, 31, 70877109, https://doi.org/10.1175/JCLI-D-17-0652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., and M. Ravichandran, 2001: Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys. Res. Lett., 28, 20332036, https://doi.org/10.1029/2000GL012548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130, https://doi.org/10.1029/2001GL013587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., R. Senan, V. S. N. Murty, and V. Fernando, 2004: A biweekly mode in the equatorial Indian Ocean. J. Geophys. Res., 109, C10003, https://doi.org/10.1029/2004JC002329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharmila, S., and Coauthors, 2013: Role of ocean–atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Climate Dyn., 41, 16511669, https://doi.org/10.1007/s00382-013-1854-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E., and Coauthors, 2021: Bay of Bengal intraseasonal oscillations and the 2018 monsoon onset. Bull. Amer. Meteor. Soc., 102, E1936E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. The MIT Press, 300 pp.

    • Crossref
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidya, P. J., and S. Prasanna Kumar, 2013: Role of mesoscale eddies on the variability of biogenic flux in the northern and central Bay of Bengal. J. Geophys. Res. Oceans, 118, 57605771, https://doi.org/10.1002/jgrc.20423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., A. J. Matthews, P. N. Vinayachandran, C. P. Neema, A. Sanchez-Franks, V. Vijith, P. Amol, and D. B. Baranowski, 2018: The dynamics of the southwest monsoon current in 2016 from high-resolution in situ observations and models. J. Phys. Oceanogr., 48, 22592282, https://doi.org/10.1175/JPO-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., J. T. Farrar, H. Seo, C. Prend, D. Sengupta, J. S. Lekha, M. Ravichandran, and R. Venkatesen, 2019: Moored observations of the surface meteorology and air–sea fluxes in the northern Bay of Bengal in 2015. J. Climate, 32, 549573, https://doi.org/10.1175/JCLI-D-18-0413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., W. J. Teague, D. W. Wang, E. Jarosz, and T. G. Jenson, 2016: Low frequency currents from deep moorings in the Southern Bay of Bengal. J. Phys. Oceanogr., 46, 32093237, https://doi.org/10.1175/JPO-D-16-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willebrand, J., S. G. H. Philander, and R. C. Pacanowski, 1980: The oceanic response to large-scale atmospheric disturbances. J. Phys. Oceanogr., 10, 411429, https://doi.org/10.1175/1520-0485(1980)010<0411:TORTLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, https://doi.org/10.1126/science.181.4096.262.

  • Yu, L., X. Jin, and R. A. Weller, 2007: Annual, seasonal, and interannual variability of air–sea heat fluxes in the Indian Ocean. J. Climate, 20, 31903209, https://doi.org/10.1175/JCLI4163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and R. Murtugudde, 2014: Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon. J. Climate, 27, 126139, https://doi.org/10.1175/JCLI-D-13-00214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 183 180 30
Full Text Views 62 62 6
PDF Downloads 105 105 6

Intraseasonal Variability of Upper-Ocean Heat Fluxes in the Central Bay of Bengal

View More View Less
  • 1 aNaval Research Laboratory, Stennis Space Center, Mississippi
  • | 2 bSRR International, Inc., Riviera Beach, Florida
  • | 3 cNRC Postdoctoral Fellow, Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 4 dDepartment of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
  • | 5 eDepartment of Physical Oceanography, Ocean University of Sri Lanka, Colombo, Sri Lanka
  • | 6 fNaval Research Laboratory, Monterey, California
Restricted access

Abstract

Upper-ocean heat content and heat fluxes of 10–60-day intraseasonal oscillations (ISOs) were examined using high-resolution currents and hydrographic fields measured at five deep-water moorings in the central Bay of Bengal (BoB) and satellite observations as part of an international effort examining the role of the ocean on monsoon intraseasonal oscillations (MISOs) in the BoB. Currents, temperature, and salinity were sampled over the upper 600–1200 m from July 2018 to June 2019. The 10–60-day velocity ISOs of magnitudes 20–30 cm s−1 were observed in the upper 200 m, and temperature ISOs as large as 3°C were observed in the thermocline near 100 m. The wavelet cospectral analysis reveals multiple periods of ISOs carrying heat southward. The meridional heat-flux divergence associated with the 10–60-day band was strongest in the central BoB at depths between 40 and 100 m, where the averaged flux divergence over the observational period is as large as 10−7 °C s−1. The vertically integrated heat-flux divergence in the upper 200 m is about 20–30 W m−2, which is comparable to the annual-average net surface heat flux in the northern BoB. Correlations between the heat content over the 26°C isotherm and the outgoing longwave radiation indicate that the atmospheric forcing typically leads changes of the oceanic heat content, but in some instances, during fall–winter months, oceanic heat content leads the atmospheric convection. Our analyses suggest that ISOs play an important role in the upper-ocean heat balance by transporting heat southward, while aiding the air–sea coupling at ISO time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Hemantha W. Wijesekera, hemantha.wijesekera@nrlssc.navy.mil

Abstract

Upper-ocean heat content and heat fluxes of 10–60-day intraseasonal oscillations (ISOs) were examined using high-resolution currents and hydrographic fields measured at five deep-water moorings in the central Bay of Bengal (BoB) and satellite observations as part of an international effort examining the role of the ocean on monsoon intraseasonal oscillations (MISOs) in the BoB. Currents, temperature, and salinity were sampled over the upper 600–1200 m from July 2018 to June 2019. The 10–60-day velocity ISOs of magnitudes 20–30 cm s−1 were observed in the upper 200 m, and temperature ISOs as large as 3°C were observed in the thermocline near 100 m. The wavelet cospectral analysis reveals multiple periods of ISOs carrying heat southward. The meridional heat-flux divergence associated with the 10–60-day band was strongest in the central BoB at depths between 40 and 100 m, where the averaged flux divergence over the observational period is as large as 10−7 °C s−1. The vertically integrated heat-flux divergence in the upper 200 m is about 20–30 W m−2, which is comparable to the annual-average net surface heat flux in the northern BoB. Correlations between the heat content over the 26°C isotherm and the outgoing longwave radiation indicate that the atmospheric forcing typically leads changes of the oceanic heat content, but in some instances, during fall–winter months, oceanic heat content leads the atmospheric convection. Our analyses suggest that ISOs play an important role in the upper-ocean heat balance by transporting heat southward, while aiding the air–sea coupling at ISO time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Hemantha W. Wijesekera, hemantha.wijesekera@nrlssc.navy.mil
Save