Spatial and Subannual Variability of the Antarctic Slope Current in an Eddying Ocean–Sea Ice Model

Wilma G. C. Huneke aResearch School of Earth Sciences, Australian National University, Canberra, Australia

Search for other papers by Wilma G. C. Huneke in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8624-365X
,
Adele K. Morrison bResearch School of Earth Sciences and the Australian Centre for Excellence in Antarctic Science, Australian National University, Canberra, Australia

Search for other papers by Adele K. Morrison in
Current site
Google Scholar
PubMed
Close
, and
Andrew McC. Hogg cResearch School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Antarctic Slope Current (ASC) circumnavigates the Antarctic continent following the continental slope and separating the waters on the continental shelf from the deeper offshore Southern Ocean. Water mass exchanges across the continental slope are critical for the global climate as they impact the global overturning circulation and the mass balance of the Antarctic ice sheet via basal melting. Despite the ASC’s global importance, little is known about its spatial and subannual variability, as direct measurements of the velocity field are sparse. Here, we describe the ASC in a global eddying ocean–sea ice model and reveal its large-scale spatial variability by characterizing the continental slope using three regimes: the surface-intensified ASC, the bottom-intensified ASC, and the reversed ASC. Each ASC regime corresponds to a distinct classification of the density field as previously introduced in the literature, suggesting that the velocity and density fields are governed by the same leading-order dynamics around the Antarctic continental slope. Only the surface-intensified ASC regime has a strong seasonality. However, large temporal variability at a range of other time scales occurs across all regimes, including frequent reversals of the current. We anticipate our description of the ASC’s spatial and subannual variability will be helpful to guide future studies of the ASC aiming to advance our understanding of the region’s response to a changing climate.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wilma G. C. Huneke, wilma.huneke@anu.edu.au

Abstract

The Antarctic Slope Current (ASC) circumnavigates the Antarctic continent following the continental slope and separating the waters on the continental shelf from the deeper offshore Southern Ocean. Water mass exchanges across the continental slope are critical for the global climate as they impact the global overturning circulation and the mass balance of the Antarctic ice sheet via basal melting. Despite the ASC’s global importance, little is known about its spatial and subannual variability, as direct measurements of the velocity field are sparse. Here, we describe the ASC in a global eddying ocean–sea ice model and reveal its large-scale spatial variability by characterizing the continental slope using three regimes: the surface-intensified ASC, the bottom-intensified ASC, and the reversed ASC. Each ASC regime corresponds to a distinct classification of the density field as previously introduced in the literature, suggesting that the velocity and density fields are governed by the same leading-order dynamics around the Antarctic continental slope. Only the surface-intensified ASC regime has a strong seasonality. However, large temporal variability at a range of other time scales occurs across all regimes, including frequent reversals of the current. We anticipate our description of the ASC’s spatial and subannual variability will be helpful to guide future studies of the ASC aiming to advance our understanding of the region’s response to a changing climate.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wilma G. C. Huneke, wilma.huneke@anu.edu.au
Save
  • Armitage, T. W., R. Kwok, A. F. Thompson, and G. Cunningham, 2018: Dynamic topography and sea level anomalies of the Southern Ocean: Variability and teleconnections. J. Geophys. Res. Oceans, 123, 613630, https://doi.org/10.1002/2017JC013534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azaneu, M. V. C., K. J. Heywood, B. Y. Queste, and A. F. Thompson, 2017: Variability of the Antarctic Slope Current system in the northwestern Weddell Sea. J. Phys. Oceanogr., 47, 29772997, https://doi.org/10.1175/JPO-D-17-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 2009: A model for the structure of the Antarctic Slope Front. Deep-Sea Res. II, 56, 859873, https://doi.org/10.1016/j.dsr2.2008.10.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., K. J. Heywood, K. W. Nicholls, and I. Fer, 2010: Observations of the Antarctic Slope Undercurrent in the southeastern Weddell Sea. Geophys. Res. Lett., 37, L13601, https://doi.org/10.1029/2010GL043603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, https://doi.org/10.1038/nature17145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, https://doi.org/10.1038/nature12567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and E. E. Hofmann, 2012: Sensitivity of Circumpolar Deep Water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Climate, 25, 47994816, https://doi.org/10.1175/JCLI-D-11-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flexas, M. D. M., M. P. Schodlok, L. Padman, D. Menemenlis, and A. H. Orsi, 2015: Role of tides on the formation of the Antarctic Slope Front at the Weddell-Scotia Confluence. J. Geophys. Res. Oceans, 120, 36583680, https://doi.org/10.1002/2014JC010372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukamachi, Y., M. Wakatsuchi, K. Taira, S. Kitagawa, T. Furukawa, and M. Fukuchi, 2000: Seasonal variability of bottom water properties off Adélie Land, Antarctica. J. Climate, 105, 65316540, https://doi.org/10.1029/1999JC900292.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res., 20, 111140, https://doi.org/10.1016/0011-7471(73)90048-X.

    • Search Google Scholar
    • Export Citation
  • Goddard, P. B., C. O. Dufour, J. Yin, S. M. Griffies, and M. Winton, 2017: CO2-induced ocean warming of the Antarctic continental shelf in an eddying global climate model. J. Geophys. Res. Oceans, 122, 80798101, https://doi.org/10.1002/2017JC012849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., A. H. Orsi, R. Muench, B. A. Huber, E. Zambianchi, and M. Visbeck, 2009: Western Ross Sea continental slope gravity currents. Deep-Sea Res. II, 56, 796817, https://doi.org/10.1016/j.dsr2.2008.10.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Tech. Rep. 7, NOAA Geophysical Fluid Dynamics Laboratory, 618 pp.

    • Search Google Scholar
    • Export Citation
  • Hattermann, T., O. A. Nost, J. M. Lilly, and L. H. Smedsrud, 2012: Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys. Res. Lett., 39, L12605, https://doi.org/10.1029/2012GL051012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., L. H. Smedsrud, O. A. Nøst, J. M. Lilly, and B. K. Galton-Fenzi, 2014: Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean. Ocean Modell., 82, 2844, https://doi.org/10.1016/j.ocemod.2014.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herraiz-Borreguero, L., R. Coleman, I. Allison, S. R. Rintoul, M. Craven, and G. D. Williams, 2015: Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Oceans, 120, 30983112, https://doi.org/10.1002/2015JC010697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., R. A. Locarnini, R. D. Frew, P. F. Dennis, and B. A. King, 1998: Transport and water masses of the Antarctic Slope Front system in the eastern Weddell Sea. Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Wiley, 203214.

    • Search Google Scholar
    • Export Citation
  • Hirano, D., Y. Kitade, K. I. Ohshima, and Y. Fukamachi, 2015: The role of turbulent mixing in the modified Shelf Water overflows that produce Cape Darnley Bottom Water. J. Geophys. Res. Oceans, 120, 910922, https://doi.org/10.1002/2014JC010059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos sea ice model documentation and software user’s manual. Tech. Rep., Los Alamos National Laboratory, 116 pp.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic Slope Front. Mar. Chem., 35, 924, https://doi.org/10.1016/S0304-4203(09)90005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 2004: Bottom water production and its links with the thermohaline circulation. Antarct. Sci., 16, 427437, https://doi.org/10.1017/S095410200400224X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2: A global ocean–sea ice model at three resolutions. Geosci. Model Dev. Discuss., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiot, P., H. Goosse, T. Fichefet, B. Barnier, and H. Gallée, 2011: Modelling the seasonal variability of the Antarctic Slope Current. Ocean Sci., 7, 455470, https://doi.org/10.5194/os-7-455-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorman, R., A. K. Morrison, and A. M. Hogg, 2020: Thermal responses to Antarctic ice shelf melt in an eddy-rich global ocean–sea-ice model. J. Climate, 33, 65996620, https://doi.org/10.1175/JCLI-D-19-0846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. Hogg, M. H. England, and P. Spence, 2020: Warm circumpolar deep water transport toward Antarctica driven by local dense water export in canyons. Sci. Adv., 6, eaav2516, https://doi.org/10.1126/sciadv.aav2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nøst, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs, 2011: Eddy overturning of the Antarctic Slope Front controls glacial melting in the eastern Weddell Sea. J. Geophys. Res. Oceans, 116, C11014, https://doi.org/10.1029/2011JC006965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Núñez-Riboni, I., and E. Fahrbach, 2009: Seasonal variability of the Antarctic Coastal Current and its driving mechanisms in the Weddell Sea. Deep-Sea Res. I, 56, 19271941, https://doi.org/10.1016/j.dsr.2009.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauthenet, E., J.-B. Sallée, S. Schmidtko, and D. Nerini, 2021: Seasonal variation of the Antarctic Slope Front occurrence and position estimated from an interpolated hydrographic climatology. J. Phys. Oceanogr., 51, 15391557, https://doi.org/10.1175/JPO-D-20-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., M. S. McCartney, and S. R. Rintoul, 2016: Direct observations of the Antarctic Slope Current transport at 113°E. J. Geophys. Res. Oceans, 121, 73907407, https://doi.org/10.1002/2015JC011594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silvano, A., S. R. Rintoul, K. Kusahara, B. Peña‐Molino, E. Wijk, D. E. Gwyther, and G. D. Williams, 2019: Seasonality of warm water intrusions onto the continental shelf near the Totten Glacier. J. Geophys. Res. Oceans, 124, 42724289, https://doi.org/10.1029/2018JC014634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, A., L.-P. Nadeau, and D. Holland, 2015: Instability and mixing of zonal jets along an idealized continental shelf break. J. Phys. Oceanogr., 45, 23152338, https://doi.org/10.1175/JPO-D-14-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic shelf break. Geophys. Res. Lett., 42, 432440, https://doi.org/10.1002/2014GL062281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2019: Acceleration and overturning of the Antarctic Slope Current by winds, eddies, and tides. J. Phys. Oceanogr., 49, 20432074, https://doi.org/10.1175/JPO-D-18-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, K. D., and Coauthors, 2020: JRA55-do-based repeat year forcing datasets for driving ocean–sea-ice models. Ocean Modell., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2013: On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves. J. Phys. Oceanogr., 43, 5164, https://doi.org/10.1175/JPO-D-11-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, P. Spence, and K. J. Heywood, 2018: The Antarctic Slope Current in a changing climate. Rev. Geophys., 56, 741770, https://doi.org/10.1029/2018RG000624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., K. G. Speer, and L. M. S. Chretien, 2020: Genesis of the Antarctic Slope Current in West Antarctica. Geophys. Res. Lett., 47, e2020GL087802, https://doi.org/10.1029/2020GL087802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, D. P., A. Jenkins, K. M. Assmann, D. R. Shoosmith, and M. A. Brandon, 2013: Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. J. Geophys. Res. Oceans, 118, 29062918, https://doi.org/10.1002/jgrc.20212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitworth, T., A. H. Orsi, S.-J. Kim, W. D. Nowlin, and R. A. Locarnini, 1998: Water masses and mixing near the Antarctic slope front. Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Wiley, 127, https://doi.org/10.1029/AR075p0001.

    • Search Google Scholar
    • Export Citation
  • Williams, G. D., S. Aoki, S. S. Jacobs, S. R. Rintoul, T. Tamura, and N. L. Bindoff, 2010: Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149°E). J. Geophys. Res. Oceans, 115, C04027, https://doi.org/10.1029/2009JC005812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., and M. L. Timmermans, 2018: Topographic Rossby waves in the Arctic Ocean’s Beaufort Gyre. J. Geophys. Res. Oceans, 123, 65216530, https://doi.org/10.1029/2018JC014233.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 806 0 0
Full Text Views 3346 2038 88
PDF Downloads 1505 414 18