Weakening and Poleward Shifting of the North Pacific Subtropical Fronts from 1980 to 2018

Lixiao Xu aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Lixiao Xu in
Current site
Google Scholar
PubMed
Close
,
Keyao Wang aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Keyao Wang in
Current site
Google Scholar
PubMed
Close
, and
Baolan Wu cThrust of Earth, Ocean and Atmospheric Sciences, The Hong Kong University of Science and Technology, Guangzhou, China

Search for other papers by Baolan Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent evidence shows that the North Pacific subtropical gyre and the Kuroshio Extension (KE) and Oyashio Extension (OE) fronts have moved poleward in the past few decades. However, changes of the North Pacific Subtropical Fronts (STFs), anchored by the North Pacific subtropical countercurrent in the southern subtropical gyre, remain to be quantified. By synthesizing observations, reanalysis, and eddy-resolving ocean hindcasts, we show that the STFs, especially their eastern part, weakened (20% ± 5%) and moved poleward (1.6° ± 0.4°) from 1980 to 2018. Changes of the STFs are modified by mode waters to the north. We find that the central mode water (CMW) (180°–160°W) shows most significant weakening (18% ± 7%) and poleward shifting (2.4° ± 0.9°) trends, while the eastern part of the subtropical mode water (STMW) (160°E–180°) has similar but moderate changes (10% ± 8%; 0.9° ± 0.4°). Trends of the western part of the STMW (140°–160°E) are not evident. The weakening and poleward shifting of mode waters and STFs are enhanced to the east and are mainly associated with changes of the northern deep mixed layers and outcrop lines—which have a growing northward shift as they elongate to the east. The eastern deep mixed layer shows the largest shallowing trend, where the subduction rate also decreases the most. The mixed layer and outcrop line changes are strongly coupled with the northward migration of the North Pacific subtropical gyre and the KE/OE jets as a result of the poleward expanded Hadley cell, indicating that the KE/OE fronts, mode waters, and STFs change as a whole system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lixiao Xu, lxu@ouc.edu.cn

Abstract

Recent evidence shows that the North Pacific subtropical gyre and the Kuroshio Extension (KE) and Oyashio Extension (OE) fronts have moved poleward in the past few decades. However, changes of the North Pacific Subtropical Fronts (STFs), anchored by the North Pacific subtropical countercurrent in the southern subtropical gyre, remain to be quantified. By synthesizing observations, reanalysis, and eddy-resolving ocean hindcasts, we show that the STFs, especially their eastern part, weakened (20% ± 5%) and moved poleward (1.6° ± 0.4°) from 1980 to 2018. Changes of the STFs are modified by mode waters to the north. We find that the central mode water (CMW) (180°–160°W) shows most significant weakening (18% ± 7%) and poleward shifting (2.4° ± 0.9°) trends, while the eastern part of the subtropical mode water (STMW) (160°E–180°) has similar but moderate changes (10% ± 8%; 0.9° ± 0.4°). Trends of the western part of the STMW (140°–160°E) are not evident. The weakening and poleward shifting of mode waters and STFs are enhanced to the east and are mainly associated with changes of the northern deep mixed layers and outcrop lines—which have a growing northward shift as they elongate to the east. The eastern deep mixed layer shows the largest shallowing trend, where the subduction rate also decreases the most. The mixed layer and outcrop line changes are strongly coupled with the northward migration of the North Pacific subtropical gyre and the KE/OE jets as a result of the poleward expanded Hadley cell, indicating that the KE/OE fronts, mode waters, and STFs change as a whole system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lixiao Xu, lxu@ouc.edu.cn
Save
  • Amirabadizadeh, M., Y. F. Huang, and T. S. Lee, 2015: Recent trends in temperature and precipitation in the Langat River Basin. Adv. Meteor., 2015, 579437, https://doi.org/10.1155/2015/579437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, Y., T. Suga, and K. Hanawa, 2002: Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J. Phys. Oceanogr., 32, 22992311, https://doi.org/10.1175/1520-0485(2002)032<2299:SSFOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., S. G. Penny, and E. Kalnay, 2019: Temperature and salinity variability in the SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993–2015. J. Climate, 32, 22772293, https://doi.org/10.1175/JCLI-D-18-0605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., Q. Chen, H. Hu, J. Fang, and H. Bai, 2020: Synergistic effects of midlatitude atmospheric upstream disturbances and oceanic subtropical front intensity variability on western Pacific jet stream in winter. J. Geophys. Res. Atmos., 125, e2020JD032788, https://doi.org/10.1029/2020JD032788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., H. Hu, X. Ren, and X. Yang, 2019: Numerical simulation of midlatitude upper‐level zonal wind response to the change of North Pacific subtropical front strength. J. Geophys. Res. Atmos., 124, 48914912, https://doi.org/10.1029/2018JD029589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2016: XBT Science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., 97, 924933, https://doi.org/10.1175/BAMS-D-15-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1987: Subduction. Dynamics of the Oceanic Surface Mixed Layer: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 181–196, http://www.soest.hawaii.edu/PubServices/1987pdfs/Cushman_Roisin.pdf.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., L. Xu, and Y. Zhang, 2021: Impact of anticyclonic eddies under stormy weather on the mixed layer variability in April south of the Kuroshio Extension. J. Geophys. Res. Oceans, 126, e2020JC016739, https://doi.org/10.1029/2020JC016739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 18 April 2021, https://doi.org/10.24381/cds.f17050d7.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24, 16081622, https://doi.org/10.1175/1520-0485(1994)024<1608:TDSOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., M. Kimoto, K. Sakamoto, and S. Iwasaki, 2005: Subsurface temperature and salinity analyses. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 18 April 2021, https://doi.org/10.5065/Y6CR-KW66.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., B. Fox-Kemper, H. Cao, R. Zheng, and Y. Du, 2021: Submesoscale fronts and their dynamical processes associated with symmetric instability in the northwest Pacific subtropical ocean. J. Phys. Oceanogr., 51, 83100, https://doi.org/10.1175/JPO-D-20-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawakami, Y., S. Sugimoto, and T. Suga, 2016: Inter-annual zonal shift of the formation region of the lighter variety of the North Pacific Central Mode Water. J. Oceanogr., 72, 225234, https://doi.org/10.1007/s10872-015-0325-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., G. Pak, H. J. Lee, Y.-O. Kwon, and Y. H. Kim, 2020: Late-1980s regime shift in the formation of the North Pacific subtropical mode water. J. Geophys. Res. Oceans, 125, e2019JC015700, https://doi.org/10.1029/2019JC015700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., and A. Kubokawa, 2012: Review on North Pacific subtropical countercurrent and subtropical fronts: Role of mode waters in ocean circulation and climate. J. Oceanogr., 68, 2143, https://doi.org/10.1007/s10872-011-0083-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., H. Mitsudera, and S.-P. Xie, 2006: Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogenesis. J. Geophys. Res., 111, C09033, https://doi.org/10.1029/2006JC003479.

    • Search Google Scholar
    • Export Citation
  • Kobashi, F., S.-P. Xie, N. Iwasaka, and T. T. Sakamoto, 2008: Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J. Climate, 21, 59605975, https://doi.org/10.1175/2008JCLI2311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., T. Nakano, N. Iwasaka, and T. Ogata, 2021: Decadal-scale variability of the North Pacific subtropical mode water and its influence on the pycnocline observed along 137°E. J. Oceanogr., 77, 487503, https://doi.org/10.1007/s10872-020-00579-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubokawa, A., 1997: A two-level model of subtropical gyre and subtropical countercurrent. J. Oceanogr., 53, 231244.

  • Kubokawa, A., and T. Inui, 1999: Subtropical countercurrent in an idealized ocean GCM. J. Phys. Oceanogr., 29, 13031313, https://doi.org/10.1175/1520-0485(1999)029<1303:SCIAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., B. Ma, Y.-H. Cheng, C.-R. Ho, B. Qiu, C. M. Lee, and M.-H. Chang, 2014: Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J. Geophys. Res. Oceans, 119, 21292142, https://doi.org/10.1002/2013JC009548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1993: Interannual positive feedbacks in a simple extratropical air–sea coupling system. J. Atmos. Sci., 50, 30223028, https://doi.org/10.1175/1520-0469(1993)050<3022:IPFIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Masuzawa, J., 1969: Subtropical mode water. Deep-Sea Res., 16, 463472, https://doi.org/10.1016/0011-7471(69)90034-5.

  • Mecking, S., and M. J. Warner, 2001: On the subsurface CFC maxima in the subtropical North Pacific thermocline and their relation to mode waters and oxygen maxima. J. Geophys. Res., 106, 22 17922 198, https://doi.org/10.1029/2001JC000846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, N. L. Bindoff, C. M. Domingues, and M. L. Vianna, 2014: South Indian countercurrent and associated fronts. J. Geophys. Res. Oceans, 119, 67636791, https://doi.org/10.1002/2014JC010076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1996: A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation. J. Oceanogr., 52, 171188, https://doi.org/10.1007/BF02235668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, E., and T. Suga, 2005: Differential formation and circulation of North Pacific central mode water. J. Phys. Oceanogr., 35, 19972011, https://doi.org/10.1175/JPO2811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, E., and B. Qiu, 2012: Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68, 520, https://doi.org/10.1007/s10872-011-0032-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, E., K. Yamada, D. Sasano, K. Enyo, T. Nakano, and M. Ishii, 2019: Remotely forced decadal physical and biogeochemical variability of North Pacific subtropical mode water over the last 40 years. Geophys. Res. Lett., 46, 15551561, https://doi.org/10.1029/2018GL081330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre and mesoscale eddies on decadal timescales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 17511764, https://doi.org/10.1175/JCLI-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, E. Oka, and S. Sugimoto, 2020: On reset of the wind-forced decadal Kuroshio Extension variability in late 2017. J. Climate, 33, 10 81310 828, https://doi.org/10.1175/JCLI-D-20-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., Q. Liu, R. Koster, C. Draper, S. Mahanama, and G. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J., 1961: On the geostrophic flow at the surface of the Pacific Ocean with respect to the 1,000-decibar surface. Tellus, 13, 489502, https://doi.org/10.3402/tellusa.v13i4.9520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safari, B., 2012: Trend analysis of the mean annual temperature in Rwanda during the last fifty two years. J. Environ. Prot., 3, 538551, https://doi.org/10.4236/jep.2012.36065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 157185, https://doi.org/10.1007/978-0-387-49791-4_10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, https://doi.org/10.1073/pnas.76.7.3051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., Y. Takei, and K. Hanawa, 1997: Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. J. Phys. Oceanogr., 27, 140152, https://doi.org/10.1175/1520-0485(1997)027<0140:TDITNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., K. Motoki, Y. Aoki, and A. M. MacDonald, 2004: The North Pacific climatology of winter mixed layer and mode waters. J. Phys. Oceanogr., 34, 322, https://doi.org/10.1175/1520-0485(2004)034<0003:TNPCOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., Y. Aoki, H. Saito, and K. Hanawa, 2008: Ventilation of the North Pacific subtropical pycnocline and mode water formation. Prog. Oceanogr., 77, 285297, https://doi.org/10.1016/j.pocean.2006.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and S. I. Kako, 2016: Decadal variation in winter mixed layer depth south of the Kuroshio Extension and its influence on winter mixed layer temperature. J. Climate, 29, 12371252, https://doi.org/10.1175/JCLI-D-15-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., K. Hanawa, T. Yasuda, and G. Yamanaka, 2012: Low-frequency variations of eastern subtropical front in the North Pacific in an eddy-resolving ocean general circulation model: Roles of central mode water in the formation and maintenance. J. Oceanogr., 68, 521531, https://doi.org/10.1007/s10872-012-0116-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., K. Hanawa, T. Watanabe, T. Suga, and S.-P. Xie, 2017: Enhanced warming of the subtropical mode water in the North Pacific and North Atlantic. Nat. Climate Change, 7, 656658, https://doi.org/10.1038/nclimate3371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uda, M., and K. Hasunuma, 1969: The eastward subtropical countercurrent in the western North Pacific Ocean. J. Oceanogr. Soc. Japan, 25, 201210, https://doi.org/10.5928/kaiyou1942.25.201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., H. Hu, and X. Yang, 2019: The atmospheric responses to the intensity variability of subtropical front in the wintertime North Pacific. Climate Dyn., 52, 56235639, https://doi.org/10.1007/s00382-018-4468-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and B. Qiu, 2018: Meridional shift of the Oyashio Extension front in the past 36 years. Geophys. Res. Lett., 45, 90429048, https://doi.org/10.1029/2018GL078433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and B. Qiu, 2019: On the seasonal variability of the Oyashio Extension fronts. Climate Dyn., 53, 70117025, https://doi.org/10.1007/s00382-019-04972-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and L. Yu, 2020a: North Pacific subtropical mode water is controlled by the Atlantic multidecadal variability. Nat. Climate Change, 10, 238243, https://doi.org/10.1038/s41558-020-0692-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and L. Yu, 2020b: The decadal to multidecadal variability of mixed layer in the South of Kuroshio Extension region. J. Climate, 33, 76977714, https://doi.org/10.1175/JCLI-D-20-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and L. Yu, 2021: Poleward shift of the Kuroshio Extension front and its impact on the North Pacific subtropical mode water in the recent decades. J. Phys. Oceanogr., 51, 457474, https://doi.org/10.1175/JPO-D-20-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., L. Xu, and X. Lin, 2022: Decadal to multidecadal variability of the western North Pacific subtropical front and countercurrent. J. Geophys. Res. Oceans, 127, e2021JC018059, https://doi.org/10.1029/2021JC018059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, https://doi.org/10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., L. Xu, Q. Liu, and F. Kobashi, 2011: Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J. Climate, 24, 12121225, https://doi.org/10.1175/2010JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., A. Kubokawa, F. Kobashi, and H. Mitsudera, 2012: New developments in mode-water research: An introduction. J. Oceanogr., 68, 13, https://doi.org/10.1007/s10872-011-0090-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., S.-P. Xie, Q. Liu, and F. Kobashi, 2011: Response of the North Pacific subtropical countercurrent and its variability to global warming. J. Oceanogr., 68, 127137, https://doi.org/10.1007/s10872-011-0031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., S.-P. Xie, and Q. Liu, 2012: Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. J. Geophys. Res., 117, C12009, https://doi.org/10.1029/2012JC008377.

    • Search Google Scholar
    • Export Citation
  • Xu, L., S.-P. Xie, J. McClean, Q. Liu, and H. Sasaki, 2014: Mesoscale eddy effect on subduction of the North Pacific mode waters. J. Geophys. Res. Oceans, 119, 48674886, https://doi.org/10.1002/2014JC009861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., P. Li, S.-P. Xie, Q. Liu, C. Liu, and W. Gao, 2016: Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nat. Commun., 7, 10505, https://doi.org/10.1038/ncomms10505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., S.-P. Xie, Q. Liu, C. Liu, P. Li, and X. Lin, 2017: Evolution of the North Pacific subtropical mode water in anticyclonic eddies. J. Geophys. Res. Oceans, 122, 10 11810 130, https://doi.org/10.1002/2017JC013450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, 2016: Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 121, 49284945, https://doi.org/10.1002/2015JC011513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, J. Lu, E. J. Gowan, X. Shi, J. Liu, and Q. Wang, 2020a: Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. J. Geophys. Res. Atmos., 125, e2020JD033158, https://doi.org/10.1029/2020JD033158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, U. Krebs-Kanzow, M. Ionita, X. Shi, D. Sidorenko, X. Gong, X. Chen, and E. J. Gowan, 2020b: Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett., 47, e2019GL085868, https://doi.org/10.1029/2019GL085868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., X. Lin, R. He, and Y. Hou, 2017: Impact of mesoscale eddies on Kuroshio intrusion variability northeast of Taiwan. J. Geophys. Res. Oceans, 122, 30213040, https://doi.org/10.1002/2016JC012263.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 487 0 0
Full Text Views 2807 1942 121
PDF Downloads 1093 316 39