The 1994 Positive Indian Ocean Dipole Event as Investigated by the Transfer Routes of Oceanic Wave Energy

Zimeng Li aGraduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Search for other papers by Zimeng Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5376-5918
and
Hidenori Aiki bInstitute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
cApplication Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Hidenori Aiki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study investigates the interannual variability of the tropical Indian Ocean (IO) based on the transfer routes of wave energy in a set of 61-yr hindcast experiments using a linear ocean model. To understand the basic feature of the IO dipole mode, this paper focuses on the 1994 pure positive event. Two sets of westward transfer episodes in the energy flux associated with Rossby waves (RWs) are identified along the equator during 1994. One set represents the same phase speed as the linear theory of equatorial RWs, while the other set is slightly slower than the theoretical phase speed. The first set originates from the reflection of equatorial Kelvin waves at the eastern boundary of the IO. On the other hand, the second set is found to be associated with off-equatorial RWs generated by southeasterly winds in the southeastern IO, which may account for the appearance of the slower group velocity. A combined empirical orthogonal function (EOF) analysis of energy-flux streamfunction and potential reveals the intense westward signals of energy flux are attributed to off-equatorial RWs associated with predominant wind input in the southeastern IO corresponding to the positive IO dipole event.

Significance Statement

The present study gains a new insight into the mechanism of the Indian Ocean dipole events using a new diagnostic scheme for wave energy based on 61-yr hindcast experiments. The results have shown the existence of two sets of westward transfer of wave energy at the equator during 1994. One set of westward signals shows the same group velocity with theoretical equatorial Rossby waves that appear reasonably along the equator. The other set of westward signals at the equator represents a slightly slower group velocity than the theoretical equatorial Rossby waves, which is associated with abnormally extended southeasterly winds during the Indian Ocean dipole event.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Zimeng Li, lizimeng1995@gmail.com; Hidenori Aiki, aiki@nagoya-u.jp

Abstract

The present study investigates the interannual variability of the tropical Indian Ocean (IO) based on the transfer routes of wave energy in a set of 61-yr hindcast experiments using a linear ocean model. To understand the basic feature of the IO dipole mode, this paper focuses on the 1994 pure positive event. Two sets of westward transfer episodes in the energy flux associated with Rossby waves (RWs) are identified along the equator during 1994. One set represents the same phase speed as the linear theory of equatorial RWs, while the other set is slightly slower than the theoretical phase speed. The first set originates from the reflection of equatorial Kelvin waves at the eastern boundary of the IO. On the other hand, the second set is found to be associated with off-equatorial RWs generated by southeasterly winds in the southeastern IO, which may account for the appearance of the slower group velocity. A combined empirical orthogonal function (EOF) analysis of energy-flux streamfunction and potential reveals the intense westward signals of energy flux are attributed to off-equatorial RWs associated with predominant wind input in the southeastern IO corresponding to the positive IO dipole event.

Significance Statement

The present study gains a new insight into the mechanism of the Indian Ocean dipole events using a new diagnostic scheme for wave energy based on 61-yr hindcast experiments. The results have shown the existence of two sets of westward transfer of wave energy at the equator during 1994. One set of westward signals shows the same group velocity with theoretical equatorial Rossby waves that appear reasonably along the equator. The other set of westward signals at the equator represents a slightly slower group velocity than the theoretical equatorial Rossby waves, which is associated with abnormally extended southeasterly winds during the Indian Ocean dipole event.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Zimeng Li, lizimeng1995@gmail.com; Hidenori Aiki, aiki@nagoya-u.jp
Save
  • Aiki, H., R. J. Greatbatch, and M. Claus, 2017: Towards a seamlessly diagnosable expression for the energy flux associated with both equatorial and mid-latitude waves. Prog. Earth Planet. Sci., 4, 11, https://doi.org/10.1186/s40645-017-0121-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., Y. Fukutomi, Y. Kanno, T. Ogata, T. Toyoda, and H. Nakano, 2021: The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap. J. Atmos. Sci., 78, 37453758, https://doi.org/10.1175/JAS-D-20-0177.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean Dipole. J. Meteor. Soc. Japan, 81, 4156, https://doi.org/10.2151/jmsj.81.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., R. Krishnan, and T. Yamagata, 1999: Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26, 30013004, https://doi.org/10.1029/1999GL010434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brigadier, L., B. A. Ogwang, V. Ongoma, C. Ngonga, and L. Nyasa, 2016: Diagnosis of the 2010 DJF flood over Zambia. Nat. Hazards, 81, 189201, https://doi.org/10.1007/s11069-015-2069-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., J. S. Chowdary, and C. Gnanaseelan, 2013: Spring asymmetric mode in the tropical Indian Ocean: Role of El Niño and IOD. Climate Dyn., 40, 14671481, https://doi.org/10.1007/s00382-012-1340-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., C. Gnanaseelan, J. S. Chowdary, and J.-J. Luo, 2014: Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res. Oceans, 119, 51055122, https://doi.org/10.1002/2013JC009713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, and Y. Li, 2016: Interannual variability of equatorial eastern Indian Ocean upwelling: Local versus remote forcing. J. Phys. Oceanogr., 49, 15731596, https://doi.org/10.1175/JPO-D-15-0117.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., X. Wang, and L. Liu, 2020: Reconstruction of three-dimensional ocean structure from sea surface data: An application of is QG method in the southwest Indian Ocean. J. Geophys. Res. Oceans, 125, e2020JC016351, https://doi.org/10.1029/2020JC016351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and L. Y. Oey, 1997: Simulation of barotropic and baroclinic tides off northern British Columbia. J. Phys. Oceanogr., 27, 762781, https://doi.org/10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delman, A. S., J. Sprintall, J. L. McClean, and L. D. Talley, 2014: The influence of remote wind forcing and Kelvin Waves on the Java upwelling in positive IOD years. 2014 AGU Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A11E-3064.

    • Search Google Scholar
    • Export Citation
  • Delman, A. S., J. Sprintall, J. L. McClean, and L. D. Talley, 2016: Anomalous Java cooling at the initiation of positive Indian Ocean dipole events. J. Geophys. Res. Oceans, 121, 58055824, https://doi.org/10.1002/2016JC011635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Zhang, L.-Y. Zhang, T. Tozuka, B. Ng, and W. Cai, 2020: Thermocline warming induced extreme Indian Ocean dipole in 2019. Geophys. Res. Lett., 47, e2020GL090079, https://doi.org/10.1029/2020GL090079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halkides, D. J., and T. Lee, 2009: Mechanisms controlling seasonal-to-interannual mixed layer temperature variability in the southeastern tropical Indian Ocean. J. Geophys. Res., 114, C02012, https://doi.org/10.1029/2008JC004949.

    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, https://doi.org/10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-M. Lu, and M. Kanamitsu, 2008: Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res., 113, D08107, https://doi.org/10.1029/2007JD009151.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandar, I., Y. Masumoto, K. Mizuno, H. Sasaki, A. K. Affandi, D. Setiabudidaya, and F. Syamsuddin, 2014: Coherent intraseasonal oceanic variations in the eastern equatorial Indian Ocean and in the Lombok and Ombai Straits from observations and a high‐resolution OGCM. J. Geophys. Res. Oceans, 119, 615630, https://doi.org/10.1002/2013JC009592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 1993: Equatorial variability and resonance in a wind-driven Indian Ocean model. J. Geophys. Res., 98, 22 533–22552, https://doi.org/10.1029/93JC02565.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and H. Aiki, 2020: The life cycle of annual waves in the Indian Ocean as identified by seamless diagnosis of the energy flux. Geophys. Res. Lett., 47, e2019GL085670, https://doi.org/10.1029/2019GL085670.

    • Search Google Scholar
    • Export Citation
  • Li, Z., H. Aiki, M. Nagura, and T. Ogata, 2021: The vertical structure of annual wave energy flux in the tropical Indian Ocean. Prog. Earth Planet. Sci., 8, 43, https://doi.org/10.1186/s40645-021-00432-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, B., and Coauthors, 2018: An extreme negative Indian Ocean dipole event in 2016: Dynamics and predictability. Climate Dyn., 51, 89100, https://doi.org/10.1007/s00382-017-3908-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and M. Nagura, 2014: Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dyn., 42, 15691586, https://doi.org/10.1007/s00382-013-1765-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010: Dynamics of zonal current variations associated with the Indian Ocean dipole. J. Geophys. Res., 115, C11026, https://doi.org/10.1029/2010JC006423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., and H. Aiki, 2019: The pathway of intraseasonal wave energy in the tropical Indian Ocean as identified by a seamless diagnostic scheme. SOLA, 15, 262267, https://doi.org/10.2151/sola.2019-047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Sheldon, 1993: A case of downstream baroclinic development over western North America. Mon. Wea. Rev., 121, 29292950, https://doi.org/10.1175/1520-0493(1993)121<2929:ACODBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polito, P. S., and W. T. Liu, 2003: Global characterization of Rossby waves at several spectral bands. J. Phys. Oceanogr., 108, 3018, https://doi.org/10.1029/2000JC000607.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31, L19306, https://doi.org/10.1029/2004GL020842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res. II, 49, 15491572, https://doi.org/10.1016/S0967-0645(01)00158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 27352751, https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., D. L. T. Anderson, and R. Smith, 1981: Beta-dispersion of low-frequency Rossby waves. Dyn. Atmos. Oceans, 5, 187214, https://doi.org/10.1016/0377-0265(81)90011-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., and H. Aiki, 2020: The climatological horizontal pattern of energy flux in the tropical Atlantic as identified by a unified diagnosis for Rossby and Kelvin waves. J. Geophys. Res. Oceans, 125, e2019JC015407, https://doi.org/10.1029/2019JC015407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., and H. Aiki, 2021: Horizontal energy flux of wind-driven intraseasonal waves in the tropical Atlantic by a unified diagnosis. J. Phys. Oceanogr., 51, 30373050, https://doi.org/10.1175/JPO-D-20-0262.1.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of extratropical, baroclinic Rossby waves. J. Phys. Oceanogr., 31, 14611476, https://doi.org/10.1175/1520-0485(2001)031<1461:TEOBPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanizaki, C., T. Tozuka, T. Doi, and T. Yamagata, 2017: Relative importance of the processes contributing to the development of SST anomalies in the eastern pole of the Indian Ocean Dipole and its implication for predictability. Climate Dyn., 49, 12891304, https://doi.org/10.1007/s00382-016-3382-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., and Coauthors, 2021: Energy flow diagnosis of ENSO from an ocean reanalysis. J. Climate, 34, 40234042, https://doi.org/10.1175/JCLI-D-20-0704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., N. H. Saji, and T. Yamagata, 1999: Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophys. Res. Lett., 26, 16131616, https://doi.org/10.1029/1999GL900179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., S. Iizuka, and T. Yamagata, 2001: Indian Ocean dipole mode events in an ocean general circulation model. Deep-Sea Res. II, 49, 15731596, http://dx.doi.org/10.1016/S0967-0645(01)00157-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and W. Cai, 2020: Two-year consecutive concurrences of positive Indian Ocean dipole and central Pacific El Niño preconditioned the 2019/2020 Australian “black summer” bushfires. Geosci. Lett., 7, 19, https://doi.org/10.1186/s40562-020-00168-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled oceanic-atmospheric dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, https://doi.org/10.1126/science.181.4096.262.

  • Yamagata, T., S. K. Behera, J.-J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean‐atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189212.

    • Search Google Scholar
    • Export Citation
  • Yan, D., K. Liu, W. Zhuang, and W. Yu, 2012: The Kelvin wave processes in the equatorial Indian Ocean during the 2006–2008 IOD events. Atmos. Ocean. Sci. Lett., 5, 324328, https://doi.org/10.1080/16742834.2012.11447007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., and H. Liu, 2008: Long-wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr., 39, 11151132, https://doi.org/10.1175/2008JPO3900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 185 0 0
Full Text Views 1928 1580 91
PDF Downloads 370 85 7