Indian Ocean Subtropical Underwater and the Interannual Variability in Its Annual Subduction Rate Associated with the Southern Annular Mode

Xunwei Nie aFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Search for other papers by Xunwei Nie in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4084-8335
,
Hao Liu aFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China
dInstitute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Science), Qingdao, China

Search for other papers by Hao Liu in
Current site
Google Scholar
PubMed
Close
,
Tengfei Xu aFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Search for other papers by Tengfei Xu in
Current site
Google Scholar
PubMed
Close
, and
Zexun Wei aFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Search for other papers by Zexun Wei in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the Indian Ocean Subtropical Underwater (IOSTUW) was investigated as a subsurface salinity maximum using Argo floats (2000–20) for the first time. It has mean salinity, potential temperature, and potential density values of 35.54 ± 0.29 psu, 17.91° ± 1.66°C, and 25.56 ± 0.35 kg m−3, respectively, and mainly extends between 10° and 30°S along the isopycnal surface in the subtropical south Indian Ocean. The annual subduction rate of the IOSTUW during the period of 2004–19 was investigated based on a gridded Argo dataset. The results revealed a mean value of 4.39 Sv (1 Sv ≡ 106 m3 s−1) with an interannual variability that is closely related to the southern annular mode (SAM). The variation in the annual subduction rate of the IOSTUW is dominated by the lateral induction term, which largely depends on the winter mixed layer depth (MLD) in the sea surface salinity (SSS) maximum region. The anomalies of winter MLD are primarily determined by SAM-related air–sea heat flux and zonal wind anomalies through modulation of the buoyancy. As a result, the annual subduction rate of the IOSTUW generally increased when the SAM index showed negative anomalies and decreased when the SAM index showed positive anomalies. Exceptional cases occurred when the wind anomaly within the SSS maximum region was weak or was dominated by its meridional component.

Significance Statement

The Indian Ocean Subtropical Underwater (IOSTUW) is characterized as a subsurface salinity maximum in the subtropical south Indian Ocean, and it has potential contribution to regional sea level change and interoceanic salinity exchange. The purpose of this work is to give a more precise description of the IOSTUW and to better understand the formation process of this water mass. Our results shine new light on hydrological characteristics of the IOSTUW based on an observational dataset collected during the past two decades. In addition, the formation of the IOSTUW was found to be closely related to the leading mode of variability in the atmospheric circulation of the Southern Hemisphere though air–sea heat flux and surface wind anomaly.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zexun Wei, weizx@fio.org.cn

Abstract

In this study, the Indian Ocean Subtropical Underwater (IOSTUW) was investigated as a subsurface salinity maximum using Argo floats (2000–20) for the first time. It has mean salinity, potential temperature, and potential density values of 35.54 ± 0.29 psu, 17.91° ± 1.66°C, and 25.56 ± 0.35 kg m−3, respectively, and mainly extends between 10° and 30°S along the isopycnal surface in the subtropical south Indian Ocean. The annual subduction rate of the IOSTUW during the period of 2004–19 was investigated based on a gridded Argo dataset. The results revealed a mean value of 4.39 Sv (1 Sv ≡ 106 m3 s−1) with an interannual variability that is closely related to the southern annular mode (SAM). The variation in the annual subduction rate of the IOSTUW is dominated by the lateral induction term, which largely depends on the winter mixed layer depth (MLD) in the sea surface salinity (SSS) maximum region. The anomalies of winter MLD are primarily determined by SAM-related air–sea heat flux and zonal wind anomalies through modulation of the buoyancy. As a result, the annual subduction rate of the IOSTUW generally increased when the SAM index showed negative anomalies and decreased when the SAM index showed positive anomalies. Exceptional cases occurred when the wind anomaly within the SSS maximum region was weak or was dominated by its meridional component.

Significance Statement

The Indian Ocean Subtropical Underwater (IOSTUW) is characterized as a subsurface salinity maximum in the subtropical south Indian Ocean, and it has potential contribution to regional sea level change and interoceanic salinity exchange. The purpose of this work is to give a more precise description of the IOSTUW and to better understand the formation process of this water mass. Our results shine new light on hydrological characteristics of the IOSTUW based on an observational dataset collected during the past two decades. In addition, the formation of the IOSTUW was found to be closely related to the leading mode of variability in the atmospheric circulation of the Southern Hemisphere though air–sea heat flux and surface wind anomaly.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zexun Wei, weizx@fio.org.cn
Save
  • Argo, 2000: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, accessed 1 February 2021, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Dong, S., S. T. Gille, and J. Sprintall, 2007: An assessment of the Southern Ocean mixed layer heat budget. J. Climate, 20, 44254442, https://doi.org/10.1175/JCLI4259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., A. S. Budnick, J. L. Sarmiento, and R. Farneti, 2011: Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett., 38, L11605, https://doi.org/10.1029/2011GL047668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • du Plessis, M., S. Swart, I. J. Ansorge, A. Mahadevan, and A. F. Thompson, 2019: Southern Ocean seasonal restratification delayed by submesoscale wind–front interactions. J. Phys. Oceanogr., 49, 10351053, https://doi.org/10.1175/JPO-D-18-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1979: An equatorial transect of the Indian Ocean. J. Mar. Res., 37, 215232.

  • Garabato, A. C. N., J. T. Allen, H. Leach, V. H. Strass, and R. T. Pollard, 2001: Mesoscale subduction at the Antarctic Polar Front driven by baroclinic instability. J. Phys. Oceanogr., 31, 20872107, https://doi.org/10.1175/1520-0485(2001)031<2087:MSATAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gründlingh, M., R. Carter, and R. Stanton, 1991: Circulation and water properties of the southwest Indian Ocean, spring 1987. Prog. Oceanogr., 28, 305342, https://doi.org/10.1016/0079-6611(91)90031-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Sieldler, J. Church, and J. Gould, Eds., Academic Press, 373386.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., 2010: An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett., 37, L23601, https://doi.org/10.1029/2010GL044777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. D. Zika, and M. H. England, 2019: Diathermal heat transport in a global ocean model. J. Phys. Oceanogr., 49, 141161, https://doi.org/10.1175/JPO-D-18-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holte, J., L. Talley, T. K. Chereskin, and B. M. Sloyan, 2012: The role of air–sea fluxes in Subantarctic Mode Water formation. J. Geophys. Res., 117, C03040, https://doi.org/10.1029/2011JC007798.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, https://doi.org/10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., W. Zhuang, X. Yan, and Z. Wu, 2020: Impacts of the upper-ocean salinity variations on the decadal sea level change in the Southeast Indian Ocean during the Argo era. Acta Oceanol. Sin., 39, 110, https://doi.org/10.1007/s13131-020-1574-4.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002a: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32, 30203038, https://doi.org/10.1175/1520-0485(2002)032<3020:FOSHTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002b: Water subducted into the Indian Ocean subtropical gyre. Deep-Sea Res. II, 49, 14411457, https://doi.org/10.1016/S0967-0645(01)00160-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsura, S., E. Oka, B. Qiu, and N. Schneider, 2013: Formation and subduction of North Pacific tropical water and their interannual variability. J. Phys. Oceanogr., 43, 24002415, https://doi.org/10.1175/JPO-D-13-031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline I. A laboratory experiment and its interpretation. Tellus, 19, 8897, https://doi.org/10.3402/tellusa.v19i1.9752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., S. Lee, M. H. England, and J. L. Mcclean, 2019: Seasonal-to-interannual response of southern ocean mixed layer depth to the southern annular mode from a global 1/10° ocean model. J. Climate, 32, 61776195, https://doi.org/10.1175/JCLI-D-19-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and F. Wang, 2012: Spreading and salinity change of North Pacific tropical water in the Philippine Sea. J. Oceanogr., 68, 439452, https://doi.org/10.1007/s10872-012-0110-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, https://doi.org/10.1029/1999GL010478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and T. Qu, 2020: Production and fate of the South Atlantic subtropical underwater. J. Geophys. Res. Oceans, 125, e2020JC016309, https://doi.org/10.1029/2020JC016309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L. L., and R. X. Huang, 2012: The global subduction/obduction rates: Their interannual and decadal variability. J. Climate, 25, 10961115, https://doi.org/10.1175/2011JCLI4228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and T. Lee, 2015: Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys. Res. Lett., 42, 11481157, https://doi.org/10.1002/2014GL062611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and J. Lan, 2017: Interannual variability of Indian Ocean subtropical mode water subduction rate. Climate Dyn., 48, 40934107, https://doi.org/10.1007/s00382-016-3322-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahongo, S. B., J. Francis, and S. E. Osima, 2012: Wind patterns of coastal Tanzania: Their variability and trends. West. Indian Ocean J. Mar. Sci., 10, 107120.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses into an eddying ocean. J. Mar. Res., 55, 201222, https://doi.org/10.1357/0022240973224373.

  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, S., P. Delecluse, J. P. Boulanger, and C. Menkes, 2002: A model study of the seasonal variability and formation mechanisms of the barrier layer in the eastern equatorial Indian Ocean. J. Geophys. Res., 107, 8017, https://doi.org/10.1029/2001JC000832.

    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. Mccreary, T. G. Jensen, J. Loschnigg, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep-Sea Res. II, 50, 20232047, https://doi.org/10.1016/S0967-0645(03)00044-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, X., S. Gao, F. Wang, and T. Qu, 2016: Subduction of North Pacific Tropical Water and its equatorward pathways as shown by a simulated passive tracer. J. Geophys. Res. Oceans, 121, 87708786, https://doi.org/10.1002/2016JC012305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, X., S. Gao, F. Wang, J. Chi, and T. Qu, 2019: Origins and pathways of the Pacific Equatorial Undercurrent identified by a simulated adjoint tracer. J. Geophys. Res. Oceans, 124, 23312347, https://doi.org/10.1029/2018JC014212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, X., Z. Wei, and Y. Li, 2020: Decadal variability in salinity of the Indian Ocean subtropical underwater during the Argo period. Geophys. Res. Lett., 47, e2020GL089104, https://doi.org/10.1029/2020GL089104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P., 1975: Deepening of the wind-mixed layer. J. Mar. Res., 33, 405422.

  • Nurser, A. J. G., and J. C. Marshall, 1991: On the relationship between subduction rates and diabatic forcing of the mixed layer. J. Phys. Oceanogr., 21, 17931802, https://doi.org/10.1175/1520-0485(1991)021<1793:OTRBSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, B. M., R. A. Fine, K. A. Maillet, and D. B. Olson, 2002: Formation rates of subtropical underwater in the Pacific Ocean. Deep-Sea Res. I, 49, 15711590, https://doi.org/10.1016/S0967-0637(02)00087-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, B. M., R. A. Fine, and D. B. Olson, 2005: A global comparison of subtropical underwater formation rates. Deep-Sea Res. I, 52, 15691590, https://doi.org/10.1016/j.dsr.2005.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, M. E., and C. S. Bretherton, 2005: A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud-radiative feedbacks. J. Climate, 18, 42164234, https://doi.org/10.1175/JCLI3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25, 23742390, https://doi.org/10.1175/1520-0485(1995)025<2374:VOTNAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, Z., Z. Wei, X. Nie, and T. Xu, 2021: Southeast Indian Subantarctic mode water in the CMIP6 coupled models. J. Geophys. Res. Oceans, 126, e2020JC016872, https://doi.org/10.1029/2020JC016872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., and J. Chen, 2009: A North Pacific decadal variability in subduction rate. Geophys. Res. Lett., 36, L22602, https://doi.org/10.1029/2009GL040914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., and S. Gao, 2017: Resurfacing of South Pacific tropical water in the equatorial Pacific and its variability associated with ENSO. J. Phys. Oceanogr., 47, 10951106, https://doi.org/10.1175/JPO-D-16-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., N. Mitsudera, and T. Yamagata, 1999: A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr., 29, 14881505, https://doi.org/10.1175/1520-0485(1999)029<1488:ACOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and R. A. Fine, 2013a: Subduction of south pacific tropical water and its equatorward pathways as shown by a simulated passive tracer. J. Phys. Oceanogr., 43, 15511565, https://doi.org/10.1175/JPO-D-12-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and I. Fukumori, 2013b: Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. J. Geophys. Res. Oceans, 118, 19821994, https://doi.org/10.1002/jgrc.20152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., L. Zhang, and N. Schneider, 2016: North Atlantic subtropical underwater and its year-to-year variability in annual subduction rate during the Argo period. J. Phys. Oceanogr., 46, 19011916, https://doi.org/10.1175/JPO-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Z. Lian, X. Nie, and Z. Wei, 2019: Eddy‐induced meridional salt flux and its impacts on the sea surface salinity maxima in the southern subtropical oceans. Geophys. Res. Lett., 46, 11 29211 300, https://doi.org/10.1029/2019GL084807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, https://doi.org/10.1038/351027a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32, 13081321, https://doi.org/10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 85018509, https://doi.org/10.1175/JCLI-D-14-00471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., N. Wienders, K. Speer, and R. Morrow, 2006: Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dyn., 56, 525542, https://doi.org/10.1007/s10236-005-0054-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S. Xie, and J. P. Mccreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scussolini, P., G. Marino, G. J. A. Brummer, and F. J. Peeters, 2015: Saline Indian Ocean waters invaded the South Atlantic thermocline during glacial termination II. Geology, 43, 139142, https://doi.org/10.1130/G36238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486, https://doi.org/10.1175/JCLI3843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaghude, Y. W., and Coauthors, 2013: Beach sand supply and transport at Kunduchi, Tanzania and Bamburi, Kenya. West. Indian Ocean J. Mar. Sci., 11, 135154.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, https://doi.org/10.1073/pnas.76.7.3051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., A. Kato, and K. Hanawa, 2000: North Pacific Tropical Water: Its climatology and temporal changes associated with the climate regime shift in the 1970s. Prog. Oceanogr., 47, 223256, https://doi.org/10.1016/S0079-6611(00)00037-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1996: On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr., 26, 406411, https://doi.org/10.1175/1520-0485(1996)026<0406:OARPOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., and L. D. Talley, 1996: Water property distributions along an eastern Pacific hydrographic section at 135°W. J. Mar. Res., 54, 541564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., and Coauthors, 2011: Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J. Geophys. Res., 116, D10108, https://doi.org/10.1029/2010JD015303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Li, and C. Wei, 2020: Subtropical sea surface salinity maxima in the South Indian ocean. J. Oceanol. Limnol., 38, 1629, https://doi.org/10.1007/s00343-019-8251-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., J. Sprintall, M. Fieux, and N. Bray, 2002: The JADE and WOCE I10/IR6 throughflow sections in the southeast Indian Ocean. Part 1: Water mass distribution and variability. Deep-Sea Res. II, 49, 13411362, https://doi.org/10.1016/S0967-0645(01)00155-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1985: Physics of thermocline ventilation. Coupled Ocean–Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier, 543590.

  • Wyrtki, K., 1971: Oceanographic Atlas of the International Indian Ocean Expedition. National Science Foundation, 531 pp.

  • Yu, L., X. Jin, and H. Liu, 2018: Poleward shift in ventilation of the North Atlantic subtropical underwater. Geophys. Res. Lett., 45, 258266, https://doi.org/10.1002/2017GL075772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Qu, 2014: Low-frequency variability of South Pacific Tropical Water from Argo. Geophys. Res. Lett., 41, 24412446, https://doi.org/10.1002/2014GL059490.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 643 0 0
Full Text Views 2588 2114 101
PDF Downloads 489 134 12