Mesoscale Eddy Kinetic Energy Budgets and Transfers between Vertical Modes in the Agulhas Current

P. Tedesco aUniv. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France

Search for other papers by P. Tedesco in
Current site
Google Scholar
PubMed
Close
,
J. Gula aUniv. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France
bInstitut Universitaire de France, Paris, France

Search for other papers by J. Gula in
Current site
Google Scholar
PubMed
Close
,
P. Penven aUniv. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France

Search for other papers by P. Penven in
Current site
Google Scholar
PubMed
Close
, and
C. Ménesguen aUniv. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France

Search for other papers by C. Ménesguen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Western boundary currents are hotspots of mesoscale variability and eddy–topography interactions, which channel energy toward smaller scales and eventually down to dissipation. Here, we assess the main mesoscale eddies energy sinks in the Agulhas Current region from a regional numerical simulation. We derive an eddy kinetic energy ( EKE¯) budget in the framework of the vertical modes. It accounts for energy transfers between energy reservoirs and vertical modes, including transfers channeled by topography. The variability is dominated by mesoscale eddies (barotropic and first baroclinic modes) in the path of intense mean currents. Eddy–topography interactions result in a major mesoscale eddy energy sink, along three different energy routes, with comparable importance: transfers toward bottom-intensified time-mean currents, generation of higher baroclinic modes, and bottom friction. The generation of higher baroclinic modes takes different forms in the Northern Agulhas Current, where it corresponds to nonlinear transfers to smaller vertical eddies on the slope, and in the Southern Agulhas Current, where it is dominated by a (linear) generation of internal gravity waves over topography. Away from the shelf, mesoscale eddies gain energy by an inverse vertical turbulent cascade. However, the Agulhas Current region remains a net source of mesoscale eddy energy due to the strong generation of eddies, modulated by the topography, especially in the Southern Agulhas Current. It shows that the local generation of mesoscale eddies dominates the net EKE¯ budget, contrary to the paradigm of mesoscale eddies decay upon western boundaries.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pauline Tedesco, pauline.tedesco@univ-brest.fr

Abstract

Western boundary currents are hotspots of mesoscale variability and eddy–topography interactions, which channel energy toward smaller scales and eventually down to dissipation. Here, we assess the main mesoscale eddies energy sinks in the Agulhas Current region from a regional numerical simulation. We derive an eddy kinetic energy ( EKE¯) budget in the framework of the vertical modes. It accounts for energy transfers between energy reservoirs and vertical modes, including transfers channeled by topography. The variability is dominated by mesoscale eddies (barotropic and first baroclinic modes) in the path of intense mean currents. Eddy–topography interactions result in a major mesoscale eddy energy sink, along three different energy routes, with comparable importance: transfers toward bottom-intensified time-mean currents, generation of higher baroclinic modes, and bottom friction. The generation of higher baroclinic modes takes different forms in the Northern Agulhas Current, where it corresponds to nonlinear transfers to smaller vertical eddies on the slope, and in the Southern Agulhas Current, where it is dominated by a (linear) generation of internal gravity waves over topography. Away from the shelf, mesoscale eddies gain energy by an inverse vertical turbulent cascade. However, the Agulhas Current region remains a net source of mesoscale eddy energy due to the strong generation of eddies, modulated by the topography, especially in the Southern Agulhas Current. It shows that the local generation of mesoscale eddies dominates the net EKE¯ budget, contrary to the paradigm of mesoscale eddies decay upon western boundaries.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pauline Tedesco, pauline.tedesco@univ-brest.fr
Save
  • Adcock, S., and D. Marshall, 2000: Interactions between geostrophic eddies and the mean circulation over large-scale bottom topography. J. Phys. Oceanogr., 30, 32233238, https://doi.org/10.1175/1520-0485(2000)030<3223:IBGEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aluie, H., M. Hecht, and G. Vallis, 2018: Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach. J. Phys. Oceanogr., 48, 225244, https://doi.org/10.1175/JPO-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B., K. Polzin, R. Scott, J. Richman, and J. Shriver, 2013: On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr., 43, 283300, https://doi.org/10.1175/JPO-D-11-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B., M. Müller, J. Richman, J. Shriver, A. Morten, R. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L., S. Elipot, A. Houk, and G. Leber, 2015: Capturing the transport variability of a western boundary jet: Results from the Agulhas Current Time-Series Experiment (ACT). J. Phys. Oceanogr., 45, 13021324, https://doi.org/10.1175/JPO-D-14-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., R. Deszoeke, M. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., M. Schlax, and R. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clément, L., E. Frajka-Williams, K. Sheen, J. Brearley, and A. Garabato Naveira, 2016: Generation of internal waves by eddies impinging on the western boundary of the North Atlantic. J. Phys. Oceanogr., 46, 10671079, https://doi.org/10.1175/JPO-D-14-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debreu, L., P. Marchesiello, P. Penven, and G. Chambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell., 49–50, 121, https://doi.org/10.1016/j.ocemod.2012.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W., and A. Hogg, 2010: Topographic inviscid dissipation of balanced flow. Ocean Modell., 32, 113, https://doi.org/10.1016/j.ocemod.2009.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W., J. McWilliams, and M. Molemaker, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., 45, 12241241, https://doi.org/10.1175/JPO-D-13-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncombe Rae, C. M., 1991: Agulhas retroflection rings in the South Atlantic Ocean: An overview. S. Afr. J. Mar. Sci., 11, 327344, https://doi.org/10.2989/025776191784287574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, https://doi.org/10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., and L. M. Beal, 2015: Characteristics, energetics, and origins of Agulhas Current meanders and their limited influence on ring shedding. J. Phys. Oceanogr., 45, 22942314, https://doi.org/10.1175/JPO-D-14-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D., E. Frajka-Williams, A. N. Garabato, K. Polzin, and A. Forryan, 2020: Mesoscale eddy dissipation by a ‘zoo’ of submesoscale processes at a western boundary. J. Geophys. Res. Oceans, 125, e2020JC016246, https://doi.org/10.1029/2020JC016246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. Bradley, D. Rogers, J. Edson, and G. Young, 1996: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L. L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4, 219246, https://doi.org/10.1016/0377-0265(80)90029-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garabato, A. N., K. Polzin, B. King, K. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the southern ocean. Science, 303, 210213, https://doi.org/10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Goschen, W., and E. Schumann, 1990: Agulhas current variability and inshore structures off the Cape Province, South Africa. J. Geophys. Res., 95, 667678, https://doi.org/10.1029/JC095iC01p00667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gründlingh, M., 1978: Drift of a satellite-tracked buoy in the southern Agulhas Current and Agulhas Return Current. Deep-Sea Res., 25, 12091224, https://doi.org/10.1016/0146-6291(78)90014-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., and V. Zeitlin, 2010: Instabilities of buoyancy-driven coastal currents and their nonlinear evolution in the two-layer rotating shallow-water model. Part 1. Passive lower layer. J. Fluid Mech., 659, 6993, https://doi.org/10.1017/S0022112010002405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2015a: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, https://doi.org/10.1175/JPO-D-14-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2015b: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and A. Beckmann, 1999: Numerical Ocean Circulation Modeling. World Scientific, 344 pp.

  • Harrison, D. E., and A. R. Robinson, 1978: Energy analysis of open regions of turbulent flows–Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211, https://doi.org/10.1016/0377-0265(78)90009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1987: Systematic forcing of large-scale geophysical flows by eddy-topography interaction. J. Fluid Mech., 184, 463476, https://doi.org/10.1017/S0022112087002970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C., and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study of the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, https://doi.org/10.1029/2007JC004371.

    • Search Google Scholar
    • Export Citation
  • Kelly, S., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S., J. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, https://doi.org/10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Kelly, S., J. Nash, K. Martini, H. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232, https://doi.org/10.1175/JPO-D-11-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatri, H., J. Sukhatme, A. Kumar, and M. Verma, 2018: Surface ocean enstrophy, kinetic energy fluxes, and spectra from satellite altimetry. J. Geophys. Res. Oceans, 123, 38753892, https://doi.org/10.1029/2017JC013516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krug, M., J. Tournadre, and F. Dufois, 2014: Interactions between the Agulhas Current and the eastern margin of the Agulhas Bank. Cont. Shelf Res., 81, 6779, https://doi.org/10.1016/j.csr.2014.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

  • Lahaye, N., S. Llewellyn, and G. Stefan, 2020: Modal analysis of internal wave propagation and scattering over large-amplitude topography. J. Phys. Oceanogr., 50, 305321, https://doi.org/10.1175/JPO-D-19-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J., 2006: The Agulhas Current. Springer, 329 pp.

  • Lutjeharms, J., and H. Valentine, 1988: Eddies at the subtropical convergence south of Africa. J. Phys. Oceanogr., 18, 761774, https://doi.org/10.1175/1520-0485(1988)018<0761:EATSCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J., and I. Ansorge, 2001: The Agulhas return current. J. Mar. Syst., 30, 115138, https://doi.org/10.1016/S0924-7963(01)00041-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J., R. Catzel, and H. Valentine, 1989: Eddies and other boundary phenomena of the Agulhas Current. Cont. Shelf Res., 9, 597616, https://doi.org/10.1016/0278-4343(89)90032-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J., O. Boebel, and H. Rossby, 2003a: Agulhas cyclones. Deep-Sea Res. II, 50, 1334, https://doi.org/10.1016/S0967-0645(02)00378-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J., P. Penven, and C. Roy, 2003b: Modelling the shear edge eddies of the southern Agulhas Current. Cont. Shelf Res., 23, 10991115, https://doi.org/10.1016/S0278-4343(03)00106-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, A., 1978: Group velocity and energy transport by Rossby waves. J. Oceanogr., 34, 17, https://doi.org/10.1007/BF02109610.

  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Molemaker, M., J. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., J. McWilliams, and M. Molemaker, 2005: Routes to dissipation in the ocean: The two-dimensional/three-dimensional turbulence conundrum. Marine Turbulence: Theories, Observations and Models, H. Z. Baumert, J. H. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397405.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paldor, N., and J. Lutjeharms, 2009: Why is the stability of the Agulhas Current geographically bi-modal? Geophys. Res. Lett., 36, L14604, https://doi.org/10.1029/2009GL038445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. McWilliams, and P. Penven, 2017: Modulation of the Agulhas Current retroflection and leakage by oceanic current interaction with the atmosphere in coupled simulations. J. Phys. Oceanogr., 47, 20772100, https://doi.org/10.1175/JPO-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. McWilliams, and J. Gula, 2018: Dampening of submesoscale currents by air-sea stress coupling in the Californian upwelling system. Sci. Rep., 8, 13388, https://doi.org/10.1038/s41598-018-31602-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1977: The dynamics of unsteady currents. Marine Modeling, E. D. Goldberg et al., Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, John Wiley and Sons, 189318.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441, https://doi.org/10.1146/annurev.fl.11.010179.002153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C., G. Wagner, and W. Young, 2018: Stimulated generation: Extraction of energy from balanced flow by near-inertial waves. J. Fluid Mech., 847, 417451, https://doi.org/10.1017/jfm.2018.308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., and P. Penven, 2011: New perspectives on Natal Pulses from satellite observations. J. Geophys. Res. Oceans, 116, C07013, https://doi.org/10.1029/2010JC006866.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., 2020: World Ocean Atlas of Argo inferred statistics. SEANOE, accessed 9 March 2020, https://doi.org/10.17882/72432.

  • Roullet, G., X. Capet, and G. Maze, 2014: Global interior eddy available potential energy diagnosed from Argo floats. Geophys. Res. Lett., 41, 16511656, https://doi.org/10.1002/2013GL059004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubio, A., B. Blanke, S. Speich, N. Grima, and C. Roy, 2009: Mesoscale eddy activity in the southern Benguela upwelling system from satellite altimetry and model data. Prog. Oceanogr., 83, 288295, https://doi.org/10.1016/j.pocean.2009.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, https://doi.org/10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlösser, F., and C. Eden, 2007: Diagnosing the energy cascade in a model of the North Atlantic. Geophys. Res. Lett., 34, L02604, https://doi.org/10.1029/2006GL027813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, R. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and B. K. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics. J. Phys. Oceanogr., 37, 673688, https://doi.org/10.1175/JPO3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R., J. Goff, A. N. Garabato, and A. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, A., R. Scott, and B. Arbic, 2008: Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: Computations from current-meter data. Geophys. Res. Lett., 35, L09606, https://doi.org/10.1029/2008GL033407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. Miller, and J. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following- coordinate ocean model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K., and G. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31, 554571, https://doi.org/10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, Z., S. Bachman, and I. Grooms, 2020: Vertical structure of ocean mesoscale eddies with implications for parameterizations of tracer transport. J. Adv. Model. Earth Syst., 12, e2020MS002151, https://doi.org/10.1029/2020MS002151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, P., J. Gula, C. Ménesguen, P. Penven, and M. Krug, 2019: Generation of submesoscale frontal eddies in the Agulhas Current. J. Geophys. Res. Oceans, 124, 76067625, https://doi.org/10.1029/2019JC015229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L., J. Taylor, R. Ferrari, and T. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsugawa, M., and H. Hasumi, 2010: Generation and growth mechanism of the Natal Pulse. J. Phys. Oceanogr., 40, 15971612, https://doi.org/10.1175/2010JPO4347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Van Aken, H., A. Van Veldhoven, C. Veth, W. De Ruijter, P. Van Leeuwen, S. Drijfhout, C. Whittle, and M. Rouault, 2003: Observations of a young Agulhas ring, Astrid, during MARE in March 2000. Deep-Sea Res. II, 50, 167195, https://doi.org/10.1016/S0967-0645(02)00383-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Vaart, P., and W. De Ruijter, 2001: Stability of western boundary currents with an application to pulselike behavior of the Agulhas Current. J. Phys. Oceanogr., 31, 26252644, https://doi.org/10.1175/1520-0485(2001)031<2625:SOWBCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., J. Gula, G. Roullet, and F. Pradillon, 2018: Dispersion of deep-sea hydrothermal vent effluents and larvae by submesoscale and tidal currents. Deep-Sea Res. I, 133, 118, https://doi.org/10.1016/j.dsr.2018.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. Johnson, and D. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608612, https://doi.org/10.1038/ngeo943.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 577 0 0
Full Text Views 1112 503 57
PDF Downloads 1146 448 39