• Benthuysen, J., and L. N. Thomas, 2012: Friction and diapycnal mixing at a slope: Boundary control of potential vorticity. J. Phys. Oceanogr., 42, 15091523, https://doi.org/10.1175/JPO-D-11-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and S. J. Lentz, 2010: Buoyancy arrest and bottom Ekman transport. Part I: Steady flow. J. Phys. Oceanogr., 40, 621635, https://doi.org/10.1175/2009JPO4266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., 2018: Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr., 48, 19952010, https://doi.org/10.1175/JPO-D-18-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 2002: Deceleration of a finite-width, stratified current over a sloping bottom: Frictional spindown or buoyancy shutdown? J. Phys. Oceanogr., 32, 336352, https://doi.org/10.1175/1520-0485(2002)032<0336:DOAFWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. L. Sommer, A. J. G. Nurser, and A. C. N. Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dell, R., and L. Pratt, 2015: Diffusive boundary layers over varying topography. J. Fluid Mech., 769, 635653, https://doi.org/10.1017/jfm.2015.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, H. F., R. Ferrari, and J. Callies, 2020: Abyssal circulation driven by near-boundary mixing: Water mass transformations and interior stratification. J. Phys. Oceanogr., 50, 22032226, https://doi.org/10.1175/JPO-D-19-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: What goes down must come up. Nature, 513, 179180, https://doi.org/10.1038/513179a.

  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1990: The role of secondary circulation in boundary mixing. J. Geophys. Res., 95, 31813188, https://doi.org/10.1029/JC095iC03p03181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1991: Marginal mixing theories. Atmos.–Ocean, 29, 313339, https://doi.org/10.1080/07055900.1991.9649407.

  • Garrett, C., 2001: An isopycnal view of near-boundary mixing and associated flows. J. Phys. Oceanogr., 31, 138142, https://doi.org/10.1175/1520-0485(2001)031<0138:AIVONB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy resolving ocean models. J. Phys. Oceanogr., 20, 16341637, https://doi.org/10.1175/1520-0485(1990)020<1634:OPVMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. Lavergne, and T. J. McDougall, 2018: Ridges, seamounts, troughs, and bowls: Topographic control of the dianeutral circulation in the abyssal ocean. J. Phys. Oceanogr., 48, 861882, https://doi.org/10.1175/JPO-D-17-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. de Lavergne, and T. J. McDougall, 2019: Tracer transport within abyssal mixing layers. J. Phys. Oceanogr., 49, 26692695, https://doi.org/10.1175/JPO-D-19-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1965: The influence of viscous boundary layers on transient motions in a stratified rotating fluid: Part I. J. Atmos. Sci., 22, 402411, https://doi.org/10.1175/1520-0469(1965)022<0402:TIOVBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. S. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • MacCready, P., and P. B. Rhines, 1991: Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J. Fluid Mech., 223, 631, https://doi.org/10.1017/S0022112091001581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., and P. B. Rhines, 1993: Slippery bottom boundary layers on a slope. J. Phys. Oceanogr., 23, 522, https://doi.org/10.1175/1520-0485(1993)023<0005:SBBLOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1989: Dianeutral advection. Parameterization of Small-Scale Processes: Proc. Fifth ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 289315.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, https://doi.org/10.1175/2010JPO4522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer, 624 pp.

  • Pedlosky, J., L. J. Pratt, M. A. Spall, and K. R. Helfrich, 1997: Circulation around islands and ridges. J. Mar. Res., 55, 11991251, https://doi.org/10.1357/0022240973224085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1970: On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. Oceanogr. Abstr., 17, 435443, https://doi.org/10.1016/0011-7471(70)90058-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., J.-H. Shyu, and H. Salmun, 1986: An experiment on boundary mixing: Mean circulation and transport rates. J. Fluid Mech., 173, 473499, https://doi.org/10.1017/S0022112086001234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and P. MacCready, 1989: Boundary control over the large-scale circulation. Parameterization of Small-Scale Processes: Proc. Fifth ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 7597.

    • Search Google Scholar
    • Export Citation
  • Ruan, X., and J. Callies, 2020: Mixing-driven mean flows and submesoscale eddies over mid-ocean ridge flanks and fracture zone canyons. J. Phys. Oceanogr., 50, 175195, https://doi.org/10.1175/JPO-D-19-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., A. F. Thompson, and J. R. Taylor, 2019: The evolution and arrest of a turbulent stratified oceanic bottom boundary layer over a slope: Downslope regime. J. Phys. Oceanogr., 49, 469487, https://doi.org/10.1175/JPO-D-18-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., A. F. Thompson, and J. R. Taylor, 2021: The evolution and arrest of a turbulent stratified oceanic bottom boundary layer over a slope: Upslope regime and PV dynamics. J. Phys. Oceanogr., 51, 10771089, https://doi.org/10.1175/JPO-D-20-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L., and G. C. Johnson, 1996: Abyssal currents generated by diffusion and geothermal heating over rises. Deep-Sea Res. I, 43, 193211, https://doi.org/10.1016/0967-0637(96)00095-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Current and temperature variability on the continental slope. Philos. Trans. Roy. Soc. London, A323, 471517, https://doi.org/10.1098/rsta.1987.0100.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and S. J. Lentz, 1991: Asymmetric behavior of an oceanic boundary layer above a sloping bottom. J. Phys. Oceanogr., 21, 11711185, https://doi.org/10.1175/1520-0485(1991)021<1171:ABOAOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and L. N. Thomas, 2020: Centrifugal and symmetric instability during Ekman adjustment of the bottom boundary layer. J. Phys. Oceanogr., 50, 17931812, https://doi.org/10.1175/JPO-D-20-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res. Oceanogr. Abstr., 17, 293301, https://doi.org/10.1016/0011-7471(70)90022-7.

All Time Past Year Past 30 Days
Abstract Views 464 279 8
Full Text Views 229 168 15
PDF Downloads 275 194 17

Rapid Spinup and Spindown of Flow along Slopes

Henry G. PetersonaCalifornia Institute of Technology, Pasadena, California

Search for other papers by Henry G. Peterson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3491-7688
and
Jörn CalliesaCalifornia Institute of Technology, Pasadena, California

Search for other papers by Jörn Callies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The near-bottom mixing that allows abyssal waters to upwell tilts isopycnals and spins up flow over the flanks of midocean ridges. Meso- and large-scale currents along sloping topography are subjected to a delicate balance of Ekman arrest and spindown. These two seemingly disparate oceanographic phenomena share a common theory, which is based on a one-dimensional model of rotating, stratified flow over a sloping, insulated boundary. This commonly used model, however, lacks rapid adjustment of interior flows, limiting its ability to capture the full physics of spinup and spindown of along-slope flow. Motivated by two-dimensional dynamics, the present work extends the one-dimensional model by constraining the vertically integrated cross-slope transport and allowing for a barotropic cross-slope pressure gradient. This produces a closed secondary circulation by forcing Ekman transport in the bottom boundary layer to return in the interior. The extended model can thus capture Ekman spinup and spindown physics: the interior return flow is turned by the Coriolis acceleration, leading to rapid rather than slow diffusive adjustment of the along-slope flow. This transport-constrained one-dimensional model accurately describes two-dimensional mixing-generated spinup over an idealized ridge and provides a unified framework for understanding the relative importance of Ekman arrest and spindown of flow along a slope.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Henry G. Peterson, hgpeterson@caltech.edu

Abstract

The near-bottom mixing that allows abyssal waters to upwell tilts isopycnals and spins up flow over the flanks of midocean ridges. Meso- and large-scale currents along sloping topography are subjected to a delicate balance of Ekman arrest and spindown. These two seemingly disparate oceanographic phenomena share a common theory, which is based on a one-dimensional model of rotating, stratified flow over a sloping, insulated boundary. This commonly used model, however, lacks rapid adjustment of interior flows, limiting its ability to capture the full physics of spinup and spindown of along-slope flow. Motivated by two-dimensional dynamics, the present work extends the one-dimensional model by constraining the vertically integrated cross-slope transport and allowing for a barotropic cross-slope pressure gradient. This produces a closed secondary circulation by forcing Ekman transport in the bottom boundary layer to return in the interior. The extended model can thus capture Ekman spinup and spindown physics: the interior return flow is turned by the Coriolis acceleration, leading to rapid rather than slow diffusive adjustment of the along-slope flow. This transport-constrained one-dimensional model accurately describes two-dimensional mixing-generated spinup over an idealized ridge and provides a unified framework for understanding the relative importance of Ekman arrest and spindown of flow along a slope.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Henry G. Peterson, hgpeterson@caltech.edu
Save