• Allen, A. A., 2005: Leeway divergence. U.S. Coast Guard Research and Development Center Tech. Rep. CG-D-05-05, 128 pp.

  • Allen, A. A., and J. V. Plourde, 1999: Review of leeway: field experiments and implementation. U.S. Coast Guard Research and Development Center Tech. Rep. CG-D-08-99, 351 pp.

  • Arya, S., 1975: A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res., 80, 34473454, https://doi.org/10.1029/JC080i024p03447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., M. J. Olascoaga, and P. Miron, 2019: Building a Maxey–Riley framework for surface ocean inertial particle dynamics. Phys. Fluids, 31, 096602, https://doi.org/10.1063/1.5110731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, G. R., M. R. Wadley, D. P. Stevens, and J. A. Johnson, 1996: Prediction of iceberg trajectories for the north Atlantic and Arctic Oceans. Geophys. Res. Lett., 23, 35873590, https://doi.org/10.1029/96GL03369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, G. R., M. R. Wadley, D. P. Stevens, and J. A. Johnson, 1997: Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26, 113135, https://doi.org/10.1016/S0165-232X(97)00012-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., A. A. Allen, C. Maisondieu, and J. C. Roth, 2011: Wind-induced drift of objects at sea: The leeway field method. Appl. Ocean Res., 33, 100109, https://doi.org/10.1016/j.apor.2011.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., A. A. Allen, C. Maisondieu, J.-C. Roth, and B. Forest, 2012: The leeway of shipping containers at different immersion levels. Ocean Dyn., 62, 741752, https://doi.org/10.1007/s10236-012-0522-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., A. A. Allenb, C. Maisondieuc, and M. Olagnonc, 2013: Advances in search and rescue at sea. Ocean Dyn., 63, 8388, https://doi.org/10.1007/s10236-012-0581-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browne, I., and A. Crary, 1958: The movement of ice in the Arctic Ocean. Arctic Sea Ice, Publ. 598, National Academy of Sciences, 191–207.

  • Daniel, P., G. Jan, F. Cabiocâh, Y. Landau, and E. Loiseau, 2002: Drift modeling of cargo containers. Spill Sci. Technol. Bull., 7, 279288, https://doi.org/10.1016/S1353-2561(02)00075-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., J. Middleton, M. Hazen, and F. Majaess, 1985: Tidal currents and eddy statistics from iceberg trajectories off Labrador. Science, 227, 13331335, https://doi.org/10.1126/science.227.4692.1333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gladstone, R. M., G. R. Bigg, and K. W. Nicholls, 2001: Iceberg trajectory modeling and meltwater injection in the southern ocean. J. Geophys. Res. Oceans, 106, 19 90319 915, https://doi.org/10.1029/2000JC000347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keghouche, I., L. Bertino, and K. A. Lisæter, 2009: Parameterization of an iceberg drift model in the Barents sea. J. Atmos. Oceanic Technol., 26, 22162227, https://doi.org/10.1175/2009JTECHO678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubat, I., M. Sayed, S. B. Savage, and T. Carrieres, 2005: An operational model of iceberg drift. Int. J. Offshore Polar Eng., 15, 125131.

    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., 2011: The Drift of Sea Ice. Springer, 350 pp.

    • Crossref
    • Export Citation
  • Lu, P., Z. Li, B. Cheng, and M. Leppäranta, 2011: A parameterization of the ice-ocean drag coefficient. J. Geophys. Res. Oceans, 116, C07019, https://doi.org/10.1029/2010JC006878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., and Coauthors, 2015: NEMO–ICB (v1. 0): Interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geosci. Model Dev., 8, 15471562, https://doi.org/10.5194/gmd-8-1547-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., and A. Adcroft, 2010: Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Modell., 34, 111124, https://doi.org/10.1016/j.ocemod.2010.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M., 2008: Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes. Springer, 215 pp.

    • Crossref
    • Export Citation
  • Miron, P., S. Medina, M. Olascoaga, and F. Beron-Vera, 2020: Laboratory verification of the buoyancy dependence of the carrying flow in a Maxey–Riley theory for inertial ocean dynamics. Phys. Fluids, 32, 071703, https://doi.org/10.1063/5.0018272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nansen, F., 1902: The Oceanography of the North Polar Basin. Vol. 3, The Norwegian North Polar Expedition 1893–1896: Scientific Results, Longmans, Green and Co., 427 pp.

  • Nesterov, O., 2018: Consideration of various aspects in a drift study of MH370 debris. Ocean Sci., 14, 387402, https://doi.org/10.5194/os-14-387-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., F. J. Beron-Vera, P. Miron, J. Triñanes, N. Putman, R. Lumpkin, and G. Goni, 2020: Observation and quantification of inertial effects on the drift of floating objects at the ocean surface. Phys. Fluids, 32, 026601, https://doi.org/10.1063/1.5139045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, D., 1985: Oil spill modeling—A tool for cleanup operations. International Oil Spill Conference Proceedings (1985), American Petroleum Institute, 243–249, https://doi.org/10.7901/2169-3358-1985-1-243.

    • Crossref
    • Export Citation
  • Röhrs, J., K. H. Christensen, L. R. Hole, G. Broström, M. Drivdal, and S. Sundby, 2012: Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn., 62, 15191533, https://doi.org/10.1007/s10236-012-0576-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R., 2020: Turbulent universality and the drift velocity at the interface between two homogeneous fluids. Phys. Fluids, 32, 082107, https://doi.org/10.1063/5.0019733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and E. G. Banke, 1983: The influence of winds, currents and towing forces on the drift of icebergs. Cold Reg. Sci. Technol., 6, 241255, https://doi.org/10.1016/0165-232X(83)90045-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenbach, K. D., O. S. Madsen, E. E. Adams, A. M. Pollack, and C. Cooper, 1977: A review and evaluation of basic techniques for predicting the behavior of surface oil slicks. NOAA Tech. Rep. MITSG 77-8, 324 pp., https://repository.library.noaa.gov/view/noaa/9623.

  • Sutherland, G., and Coauthors, 2020: Evaluating the leeway coefficient of ocean drifters using operational marine environmental prediction systems. J. Atmos. Oceanic Technol., 37, 19431954, https://doi.org/10.1175/JTECH-D-20-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndike, A., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res. Oceans, 87, 58455852, https://doi.org/10.1029/JC087iC08p05845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timco, G., and R. Frederking, 1996: A review of sea ice density. Cold Reg. Sci. Technol., 24, 16, https://doi.org/10.1016/0165-232X(95)00007-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Stocken, T., B. Vanschoenwinkel, D. J. De Ryck, T. J. Bouma, F. Dahdouh-Guebas, and N. Koedam, 2015: Interaction between water and wind as a driver of passive dispersal in mangroves. PLOS ONE, 10, e0121593, https://doi.org/10.1371/journal.pone.0121593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., R. W. Dell, and I. Eisenman, 2017: An analytical model of iceberg drift. J. Phys. Oceanogr., 47, 16051616, https://doi.org/10.1175/JPO-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zubov, N., 1945: L’dy Arktiki [Ice of the Arctic]. Izd-vo Glavsevmorputi, 491 pp.

All Time Past Year Past 30 Days
Abstract Views 606 591 40
Full Text Views 99 96 6
PDF Downloads 142 138 5

How Winds and Ocean Currents Influence the Drift of Floating Objects

Till J. W. WagneraUniversity of Wisconsin–Madison, Madison, Wisconsin
bUniversity of North Carolina Wilmington, Wilmington, North Carolina

Search for other papers by Till J. W. Wagner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4572-1285
,
Ian EisenmancScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ian Eisenman in
Current site
Google Scholar
PubMed
Close
,
Amanda M. CerolibUniversity of North Carolina Wilmington, Wilmington, North Carolina
dOcean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Amanda M. Ceroli in
Current site
Google Scholar
PubMed
Close
, and
Navid C. ConstantinoueAustralian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Navid C. Constantinou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic icebergs, unconstrained sea ice floes, oil slicks, mangrove drifters, lost cargo containers, and other flotsam are known to move at 2%–4% of the prevailing wind velocity relative to the water, despite vast differences in the material properties, shapes, and sizes of objects. Here, we revisit the roles of density, aspect ratio, and skin and form drag in determining how an object is driven by winds and water currents. Idealized theoretical considerations show that although substantial differences exist for end members of the parameter space (either very thin or thick and very light or dense objects), most realistic cases of floating objects drift at approximately 3% of the free-stream wind velocity (measured outside an object’s surface boundary layer) relative to the water. This relationship, known as a long-standing rule of thumb for the drift of various types of floating objects, arises from the square root of the ratio of the density of air to that of water. We support our theoretical findings with flume experiments using floating objects with a range of densities and shapes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Till Wagner, till.wagner@wisc.edu

Abstract

Arctic icebergs, unconstrained sea ice floes, oil slicks, mangrove drifters, lost cargo containers, and other flotsam are known to move at 2%–4% of the prevailing wind velocity relative to the water, despite vast differences in the material properties, shapes, and sizes of objects. Here, we revisit the roles of density, aspect ratio, and skin and form drag in determining how an object is driven by winds and water currents. Idealized theoretical considerations show that although substantial differences exist for end members of the parameter space (either very thin or thick and very light or dense objects), most realistic cases of floating objects drift at approximately 3% of the free-stream wind velocity (measured outside an object’s surface boundary layer) relative to the water. This relationship, known as a long-standing rule of thumb for the drift of various types of floating objects, arises from the square root of the ratio of the density of air to that of water. We support our theoretical findings with flume experiments using floating objects with a range of densities and shapes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Till Wagner, till.wagner@wisc.edu
Save