• Álvarez, M., F. F. Pérez, H. Bryden, and A. F. Ríos, 2004: Physical and biogeochemical transports structure in the North Atlantic subpolar gyre. J. Geophys. Res., 109, C03027, https://doi.org/10.1029/2003JC002015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvera-Azcárate, A., A. Barth, J.-M. Beckers, and R. H. Weisberg, 2007: Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res., 112, C03008, https://doi.org/10.1029/2006JC003660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambar, I., and M. R. Howe, 1979: Observations of the Mediterranean outflow—I mixing in the Mediterranean outflow. Deep-Sea Res., 26A, 535554, https://doi.org/10.1016/0198-0149(79)90095-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

    • Crossref
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, J. Chang, Ed., Methods in Computational Physics: Advances in Research and Applications, Vol. 17, Elsevier, 173265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Crossref
    • Export Citation
  • Argo, 2000: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). Sea Scientific Open Data Publication, http://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Armi, L., and D. M. Farmer, 1986: Maximal two-layer exchange through a contraction with barotropic net flow. J. Fluid Mech., 164, 2751, https://doi.org/10.1017/S0022112086002458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artale, V., S. Calmanti, P. Malanotte-Rizzoli, G. Pisacane, V. Rupolo, and M. Tsimplis, 2006: The Atlantic and Mediterranean Sea as connected systems. Mediterranean Climate Variability, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Developments in Earth and Environmental Sciences, Vol. 4, Elsevier, 283323.

    • Crossref
    • Export Citation
  • Baringer, M. O., 1993: Mixing and dynamics of the Mediterranean outflow. Ph.D. thesis, Massachusetts Institute of Technology, 240 pp.

    • Crossref
    • Export Citation
  • Baringer, M. O., and J. F. Price, 1997: Mixing and spreading of the Mediterranean outflow. J. Phys. Oceanogr., 27, 16541677, https://doi.org/10.1175/1520-0485(1997)027<1654:MASOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, https://doi.org/10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Béranger, K., L. Mortier, and M. Crépon, 2005: Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica, derived from a high-resolution model of the Mediterranean circulation. Prog. Oceanogr., 66, 341364, https://doi.org/10.1016/j.pocean.2004.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., J. Candela, and T. H. Kinder, 1994: Exchange through the Strait of Gibraltar. Prog. Oceanogr., 33, 201248, https://doi.org/10.1016/0079-6611(94)90028-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candela, J., 2001: Mediterranean water and global circulation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, International Geophysics Series, Vol. 77, Elsevier, 419429, https://doi.org/10.1016/S0074-6142(01)80132-7.

    • Crossref
    • Export Citation
  • Carracedo, L. I., P. C. Pardo, S. Flecha, and F. F. Pérez, 2016: On the Mediterranean water composition. J. Phys. Oceanogr., 46, 13391358, https://doi.org/10.1175/JPO-D-15-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, S. N., R. S. James, P. Ray, K. Chen, A. Lassman, and J. Brownlee, 2013: Grids in numerical weather and climate models. Climate Change and Regional/Local Responses, P. Ray and Y. Zhang, Eds., InTech, https://doi.org/10.5772/49933.

    • Crossref
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Pascual-Collar, Á., M. G. Sotillo, B. Levier, R. Aznar, P. Lorente, A. Amo-Baladrón, and E. Álvarez-Fanjul, 2019: Regional circulation patterns of Mediterranean Outflow Water near the Iberian and African continental slopes. Ocean Sci., 15, 565582, https://doi.org/10.5194/os-15-565-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2005: Entrainment, diapycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor–Yamada turbulence scheme. Ocean Modell., 9, 151168, https://doi.org/10.1016/j.ocemod.2004.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., and G. L. Mellor, 2004: A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Modell., 6, 379403, https://doi.org/10.1016/S1463-5003(03)00026-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and L. Armi, 1988: The flow of Atlantic water through the Strait of Gibraltar. The flow of Mediterranean water through the Strait of Gibraltar: Undefined. Prog. Oceanogr., 21, 1103, https://doi.org/10.1016/0079-6611(88)90055-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2019: Challenges and prospects in ocean circulation models. Front. Mar. Sci., 6, 65, https://doi.org/10.3389/fmars.2019.00065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Lafuente, J., A. Sánchez Román, G. Díaz del Río, G. Sannino, and J. C. Sánchez Garrido, 2007: Recent observations of seasonal variability of the Mediterranean outflow in the Strait of Gibraltar. J. Geophys. Res., 112, C10005, https://doi.org/10.1029/2006JC003992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Lafuente, J., A. Sánchez-Román, C. Naranjo, and J. C. Sánchez-Garrido, 2011: The very first transformation of the Mediterranean outflow in the Strait of Gibraltar. J. Geophys. Res., 116, C07010, https://doi.org/10.1029/2011JC006967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., S. P. O’Farrell, M. A. Collier, M. R. Dix, L. D. Rotstayn, E. A. Kowalczyk, A. C. Hirst, and I. G. Watterson, 2010: The CSIRO Mk3.5 climate model. CAWCR Tech. Rep. 021, 74 pp., http://hdl.handle.net/102.100.100/108810?index=1.

    • Crossref
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, https://doi.org/10.1016/j.dsr.2010.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

    • Crossref
    • Export Citation
  • Heuzé, C., 2017: North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci., 13, 609622, https://doi.org/10.5194/os-13-609-2017.

  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2013: Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett., 40, 14091414, https://doi.org/10.1002/grl.50287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2015: Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J. Climate, 28, 29172944, https://doi.org/10.1175/JCLI-D-14-00381.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, T. S., 1999: The thermohaline forcing of the Gibraltar exchange. J. Mar. Syst., 20, 131, https://doi.org/10.1016/S0924-7963(98)00068-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordà, G., and Coauthors, 2017: The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives. Prog. Oceanogr., 156, 174208, https://doi.org/10.1016/j.pocean.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, https://doi.org/10.1002/jame.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamworapan, S., and C. Surussavadee, 2019: Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv. Meteor., 2019, 1067365, https://doi.org/10.1155/2019/1067365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koltermann, K. P., V. Gouretski, and K. Jancke, 2011: Atlantic Ocean. Vol. 3, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), International WOCE Project Office, https://doi.org/10.21976/C6RP4Z.

    • Crossref
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, https://doi.org/10.1016/j.ocemod.2004.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The Gravity Current Entrainment Climate Process team. Bull. Amer. Meteor. Soc., 90, 657670, https://doi.org/10.1175/2008BAMS2667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcos, M., and M. N. Tsimplis, 2008: Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J. Geophys. Res., 113, C12028, https://doi.org/10.1029/2008JC004820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millot, C., J. Candela, J.-L. Fuda, and Y. Tber, 2006: Large warming and salinification of the Mediterranean outflow due to changes in its composition. Deep-Sea Res. I, 53, 656666, https://doi.org/10.1016/j.dsr.2005.12.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa, J., and N. A. Bray, 1991: Water mass exchange in the Gulf of Cadiz. Deep-Sea Res., 38A, S465S503, https://doi.org/10.1016/S0198-0149(12)80021-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oddo, P., M. Adani, N. Pinardi, C. Fratianni, M. Tonani, and D. Pettenuzzo, 2009: A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci., 5, 461473, https://doi.org/10.5194/os-5-461-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376, https://doi.org/10.1175/JCLI4253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, R. A., and M. S. Lozier, 2004: On the warming and salinification of the Mediterranean outflow waters in the North Atlantic. Geophys. Res. Lett., 31, L01202, https://doi.org/10.1029/2003GL018161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. O’Neil Baringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33, 161200, https://doi.org/10.1016/0079-6611(94)90027-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and J. Yang, 1998: Marginal sea overflows for climate simulations. Ocean Modeling and Parameterization, E. P. Chassignet and J. Verron, Eds., Springer, 155170.

    • Crossref
    • Export Citation
  • Price, J. F., and Coauthors, 1993: Mediterranean outflow mixing and dynamics. Science, 259, 12771282, https://doi.org/10.1126/science.259.5099.1277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogerson, M., G. R. Bigg, E. J. Rohling, and J. Ramirez, 2012: Vertical density gradient in the eastern North Atlantic during the last 30,000 years. Climate Dyn., 39, 589598, https://doi.org/10.1007/s00382-011-1148-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., J. T. Abatzoglou, K. C. Hegewisch, and P. W. Mote, 2013: Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos., 118, 10 88410 906, https://doi.org/10.1002/jgrd.50843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruti, P. M., and Coauthors, 2016: Med-CORDEX initiative for Mediterranean climate studies. Bull. Amer. Meteor. Soc., 97, 11871208, https://doi.org/10.1175/BAMS-D-14-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sammartino, S., J. G. Lafuente, C. Naranjo, J. C. S. Garrido, R. S. Leal, and A. S. Román, 2015: Ten years of marine current measurements in Espartel Sill, Strait of Gibraltar. J. Geophys. Res. Oceans, 120, 63096328, https://doi.org/10.1002/2014JC010674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Garrido, J. C., G. Sannino, L. Liberti, J. García Lafuente, and L. Pratt, 2011: Numerical modeling of three-dimensional stratified tidal flow over Camarinal Sill, Strait of Gibraltar. J. Geophys. Res., 116, C12026, https://doi.org/10.1029/2011JC007093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Leal, R. F., and Coauthors, 2017: The Mediterranean overflow in the Gulf of Cadiz: A rugged journey. Sci. Adv., 3, eaao0609, https://doi.org/10.1126/sciadv.aao0609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Román, A., G. Sannino, J. García-Lafuente, A. Carillo, and F. Criado-Aldeanueva, 2009: Transport estimates at the western section of the Strait of Gibraltar: A combined experimental and numerical modeling study. J. Geophys. Res., 114, C06002, https://doi.org/10.1029/2008JC005023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sannino, G., L. Pratt, and A. Carillo, 2009: Hydraulic criticality of the exchange flow through the Strait of Gibraltar. J. Phys. Oceanogr., 39, 27792799, https://doi.org/10.1175/2009JPO4075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, K., S. A. Josey, M. Herrmann, L. Grignon, G. P. Gasparini, and H. L. Bryden, 2010: Abrupt warming and salting of the Western Mediterranean Deep Water after 2005: Atmospheric forcings and lateral advection. J. Geophys. Res., 115, C08029, https://doi.org/10.1029/2009JC005749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddall, M., D. A. Smeed, S. Matthiesen, and E. J. Rohling, 2002: Modelling the seasonal cycle of the exchange flow in Bab El Mandab (Red Sea). Deep-Sea Res. I, 49, 15511569, https://doi.org/10.1016/S0967-0637(02)00043-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Somot, S., F. Sevault, and M. Déqué, 2006: Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Climate Dyn., 27, 851879, https://doi.org/10.1007/s00382-006-0167-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soto-Navarro, J., F. Criado-Aldeanueva, J. García-Lafuente, and A. Sánchez-Román, 2010: Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. J. Geophys. Res., 115, C10023, https://doi.org/10.1029/2010JC006302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soto-Navarro, J., S. Somot, F. Sevault, J. Beuvier, F. Criado-Aldeanueva, J. García-Lafuente, and K. Béranger, 2015: Evaluation of regional ocean circulation models for the Mediterranean Sea at the Strait of Gibraltar: Volume transport and thermohaline properties of the outflow. Climate Dyn., 44, 12771292, https://doi.org/10.1007/s00382-014-2179-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soto-Navarro, J., and Coauthors, 2020: Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble. Climate Dyn., 54, 21352165, https://doi.org/10.1007/s00382-019-05105-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparnocchia, S., N. Pinardi, and E. Demirov, 2003: Multivariate Empirical Orthogonal Function analysis of the upper thermocline structure of the Mediterranean Sea from observations and model simulations. Ann. Geophys., 21, 167187, https://doi.org/10.5194/angeo-21-167-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y. M., and M. J. Roberts, 2005: The impact of a bottom boundary layer scheme on the North Atlantic Ocean in a global coupled climate model. J. Phys. Oceanogr., 35, 202217, https://doi.org/10.1175/JPO-2671.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, R. B., and G. R. Bigg, 2000: Modelling the sensitivity of Mediterranean outflow to anthropogenically forced climate change. Climate Dyn., 16, 355368, https://doi.org/10.1007/s003820050333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L. E., and L. J. Pratt, 2005: Two-layer rotating exchange flow between two deep basins: Theory and application to the Strait of Gibraltar. J. Phys. Oceanogr., 35, 15681592, https://doi.org/10.1175/JPO2775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tonani, M., N. Pinardi, S. Dobricic, I. Pujol, and C. Fratianni, 2008: A high-resolution free-surface model of the Mediterranean Sea. Ocean Sci., 4, 114, https://doi.org/10.5194/os-4-1-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsimplis, M. N., and H. L. Bryden, 2000: Estimation of the transports through the Strait of Gibraltar. Deep-Sea Res. I, 47, 22192242, https://doi.org/10.1016/S0967-0637(00)00024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsimplis, M. N., and Coauthors, 2006: Changes in the oceanography of the Mediterranean Sea and their link to climate variability. Mediterranean Climate Variability, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Developments in Earth and Environmental Sciences, Vol. 4, Elsevier, 227282.

  • Tsujino, H., M. Hirabara, H. Nakano, T. Yasuda, T. Motoi, and G. Yamanaka, 2011: Simulating present climate of the global ocean–ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): Simulation characteristics and variability in the Pacific sector. J. Oceanogr., 67, 449479, https://doi.org/10.1007/s10872-011-0050-3.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., J. C. Sanchez Garrido, N. Stashchuk, J. Garcia Lafuente, and M. Losada, 2009: Three-dimensional evolution of large-amplitude internal waves in the Strait of Gibraltar. J. Phys. Oceanogr., 39, 22302246, https://doi.org/10.1175/2009JPO4007.1.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wu, W., G. Danabasoglu, and W. G. Large, 2007: On the effects of parameterized Mediterranean overflow on North Atlantic Ocean circulation and climate. Ocean Modell., 19, 3152, https://doi.org/10.1016/j.ocemod.2007.06.003.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., J. F. González-Rouco, J. Luterbacher, and H. Wanner, 2003: Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Climate Dyn., 20, 723739, https://doi.org/10.1007/s00382-003-0304-x.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., J. F. González-Rouco, J. Luterbacher, and H. Wanner, 2004: Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Climate Dyn., 23, 6378, https://doi.org/10.1007/s00382-004-0422-0.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., A. Leetmaa, and M. Ji, 2000: ENSO prediction with Markov models: The impact of sea level. J. Climate, 13, 849871, https://doi.org/10.1175/1520-0442(2000)013<0849:EPWMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., 1970: On the temperature and salinity structure of the Mediterranean water in the northeast Atlantic. Deep-Sea Res. Oceanogr. Abstr., 17, 627631, https://doi.org/10.1016/0011-7471(70)90072-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 396 395 24
Full Text Views 109 109 1
PDF Downloads 133 133 3

On the Representation of Mediterranean Overflow Waters in Global Climate Models

Lorine BehraCentre for International Development and Environmental Research, Justus Liebig University, Giessen, Germany

Search for other papers by Lorine Behr in
Current site
Google Scholar
PubMed
Close
,
Niklas LutheraCentre for International Development and Environmental Research, Justus Liebig University, Giessen, Germany

Search for other papers by Niklas Luther in
Current site
Google Scholar
PubMed
Close
,
Simon A. JoseybNational Oceanography Centre, Southampton, United Kingdom

Search for other papers by Simon A. Josey in
Current site
Google Scholar
PubMed
Close
,
Jürg LuterbacheraCentre for International Development and Environmental Research, Justus Liebig University, Giessen, Germany
cClimatology, Climate Dynamics and Climate Change, Department of Geography, Justus Liebig University, Giessen, Germany
dScience and Innovation Department, World Meteorological Organization, Geneva, Switzerland

Search for other papers by Jürg Luterbacher in
Current site
Google Scholar
PubMed
Close
,
Sebastian WagnereInstitute of Coastal Systems—Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany

Search for other papers by Sebastian Wagner in
Current site
Google Scholar
PubMed
Close
, and
Elena XoplakiaCentre for International Development and Environmental Research, Justus Liebig University, Giessen, Germany
cClimatology, Climate Dynamics and Climate Change, Department of Geography, Justus Liebig University, Giessen, Germany

Search for other papers by Elena Xoplaki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate representation of the Atlantic–Mediterranean exchange in climate models is important for a reliable simulation of the circulation in the North Atlantic Ocean. We evaluate the performance of 10 global climate models in representing Mediterranean Overflow Water (MOW) over the recent period 1986–2005 by using various performance metrics. The metrics are based on the representation of the climatological mean state and the spatiotemporal variability of temperature, salinity, and volume transports. On the basis of analyses and observations, we perform a model ranking by calculating absolute, relative, and total relative errors Ej over each performance metric and model. The majority of models simulate at least six metrics well. The equilibrium depth of the MOW, the mean Atlantic–Mediterranean exchange flow, and the dominant pattern of the MOW are represented reasonably well by most of the models. Of those models considered, MPI-ESM-MR, MPI-ESM-LR, CSIRO Mk3.6.0, and MRI-CGCM3 provide the best MOW representation (Ej = 0.14, 0.19, 0.19, and 0.25, respectively). They are thus likely to be the most suitable choices for studies of MOW-dependent processes. However, the models experience salinity, temperature, and transport biases and do not represent temporal variability accurately. The implications of our results for future model analysis of the Mediterranean Sea overflow are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lorine Behr, Lorine.Behr@zeu.uni-giessen.de

Abstract

Accurate representation of the Atlantic–Mediterranean exchange in climate models is important for a reliable simulation of the circulation in the North Atlantic Ocean. We evaluate the performance of 10 global climate models in representing Mediterranean Overflow Water (MOW) over the recent period 1986–2005 by using various performance metrics. The metrics are based on the representation of the climatological mean state and the spatiotemporal variability of temperature, salinity, and volume transports. On the basis of analyses and observations, we perform a model ranking by calculating absolute, relative, and total relative errors Ej over each performance metric and model. The majority of models simulate at least six metrics well. The equilibrium depth of the MOW, the mean Atlantic–Mediterranean exchange flow, and the dominant pattern of the MOW are represented reasonably well by most of the models. Of those models considered, MPI-ESM-MR, MPI-ESM-LR, CSIRO Mk3.6.0, and MRI-CGCM3 provide the best MOW representation (Ej = 0.14, 0.19, 0.19, and 0.25, respectively). They are thus likely to be the most suitable choices for studies of MOW-dependent processes. However, the models experience salinity, temperature, and transport biases and do not represent temporal variability accurately. The implications of our results for future model analysis of the Mediterranean Sea overflow are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lorine Behr, Lorine.Behr@zeu.uni-giessen.de
Save