• Alari, V., J. Staneva, Ø. Breivik, J.-R. Bidlot, K. Mogensen, and P. Janssen, 2016: Surface wave effects on water temperature in the Baltic Sea: Simulations with the coupled NEMO-WAM model. Ocean Dyn., 66, 917930, https://doi.org/10.1007/s10236-016-0963-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, J.-H. G., 2006: Numerical modeling of ocean swell contributions to the global wind-wave climate. Ocean Modell., 11, 98122, https://doi.org/10.1016/j.ocemod.2004.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, https://doi.org/10.1175/2010JPO4324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Y., Z. Song, and F. Qiao, 2020: FIO-ESM version 2.0: Model description and evaluation. J. Geophys. Res. Oceans, 125, e2019JC016036, https://doi.org/10.1029/2019JC016036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., K. Mogensen, J.-R. Bidlot, M. A. Balmaseda, and P. A. Janssen, 2015: Surface wave effects in the NEMO ocean model: Forced and coupled experiments. J. Geophys. Res. Oceans, 120, 29732992, https://doi.org/10.1002/2014JC010565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., A. Carrasco, J. Staneva, A. Behrens, A. Semedo, J.-R. Bidlot, and O. J. Aarnes, 2019: Global stokes drift climate under the RCP8.5 scenario. J. Climate, 32, 16771691, https://doi.org/10.1175/JCLI-D-18-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., F. Qiao, C. J. Huang, and B. Zhao, 2018: Deviation of wind stress from wind direction under low wind conditions. J. Geophys. Res. Oceans, 123, 93579368, https://doi.org/10.1029/2018JC014137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., A. Rutgersson, X. Yin, Y. Xu, and F. Qiao, 2020: On the first observed wave-induced stress over the global ocean. J. Geophys. Res. Oceans, 125, e2020JC016623, https://doi.org/10.1029/2020JC016623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, https://doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099, https://doi.org/10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. Plant, M. Stiassnie, H. C. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2020: IFS documentation CY43r1, Part VII: ECMWF wave model. ECMWF Model Documentation, European Centre for Medium-Range Weather Forecasts, 114 pp., https://www.ecmwf.int/en/elibrary/19751-ifs-documentation-cy47r1-part-vii-ecmwf-wave-model.

    • Search Google Scholar
    • Export Citation
  • Esters, L., Ø. Breivik, S. Landwehr, G. S. A. ten Doeschate, K. Christensen, J.-R. Bidlot, and B. Ward, 2018: Turbulence scaling comparisons in the ocean surface boundary layer. J. Geophys. Res. Oceans, 123, 21722191, https://doi.org/10.1002/2017JC013525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and S. M. Griffies, 2014: Impacts of parameterized Langmuir turbulence and non-breaking wave mixing in global climate simulations. J. Climate, 27, 47524775, https://doi.org/10.1175/JCLI-D-13-00583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., S.-J. Lin, S. M. Griffies, and M. A. Hemer, 2014: Simulated global swell and wind-sea climate and their responses to anthropogenic climate change at the end of the twenty-first century. J. Climate, 27, 35163536, https://doi.org/10.1175/JCLI-D-13-00198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., J. Trowbridge, and A. Williams III, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37, 17641777, https://doi.org/10.1175/JPO3098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 26462660, https://doi.org/10.1175/2007JAS2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., S. E. Belcher, and P. P. Sullivan, 2010: A global climatology of wind–wave interaction. J. Phys. Oceanogr., 40, 12631282, https://doi.org/10.1175/2010JPO4377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., J. A. Church, and J. R. Hunter, 2010: Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol., 30, 475491, https://doi.org/10.1002/joc.1900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Topics in Micrometeorology: A Festschrift for Arch Dyer, B. B. Hicks, Ed., Springer, 5578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., E. Sahlée, A.-S. Smedman, A. Rutgersson, E. Nilsson, K. K. Kahma, and W. M. Drennan, 2015: Surface stress over the ocean in swell-dominated conditions during moderate winds. J. Atmos. Sci., 72, 47774795, https://doi.org/10.1175/JAS-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. J., and F. Qiao, 2021: Simultaneous observations of turbulent Reynolds stress in the ocean surface boundary layer and wind stress over the sea surface. J. Geophys. Res. Oceans, 126, e2020JC016839, https://doi.org/10.1029/2020JC016839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P., 2012: Ocean wave effects on the daily cycle in SST. J. Geophys. Res., 117, C00J32, https://doi.org/10.1029/2012JC007943.

  • Jiang, X., Z. Zhong, and C. Liu, 2008: The effect of typhoon-induced SST cooling on typhoon intensity: The case of Typhoon Chanchu (2006). Adv. Atmos. Sci., 25, 10621072, https://doi.org/10.1007/s00376-008-1062-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalourazi, M. Y., S. M. Siadatmousavi, A. Yeganeh-Bakhtiary, and F. Jose, 2021: WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan. Oceanologia, 63, 194213, https://doi.org/10.1016/j.oceano.2020.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraan, G., W. Oost, and P. Janssen, 1996: Wave energy dissipation by whitecaps. J. Atmos. Oceanic Technol., 13, 262267, https://doi.org/10.1175/1520-0426(1996)013<0262:WEDBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuik, A., G. P. Van Vledder, and L. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 10201034, https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Law Chune, S., and L. Aouf, 2018: Wave effects in global ocean modeling: Parametrizations vs. forcing from a wave model. Ocean Dyn., 68, 17391758, https://doi.org/10.1007/s10236-018-1220-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modell., 103, 145160, https://doi.org/10.1016/j.ocemod.2015.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., B. Fox-Kemper, Ø. Breivik, and A. Webb, 2017: Statistical models of global Langmuir mixing. Ocean Modell., 113, 95114, https://doi.org/10.1016/j.ocemod.2017.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., C.-Y. Tam, Y. Li, N.-C. Lau, J. Chen, S. T. Chan, D.-S. Dickson Lau, and Y. Huang, 2022: How does air-sea wave interaction affect tropical cyclone intensity? An atmosphere-wave-ocean coupled model study based on Super Typhoon Mangkhut (2018). Earth Space Sci., 9, e2021EA002136, https://doi.org/10.1029/2021EA002136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Sun, N. O. Jensen, H. Jørgensen, E. Pardyjak, and H. Fernando, 2001: Determination of the surface drag coefficient. Bound.-Layer Meteor., 99, 249276, https://doi.org/10.1023/A:1018915228170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, https://doi.org/10.1146/annurev.fl.28.010196.001431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K. S., L. Magnusson, and J.-R. Bidlot, 2017: Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Oceans, 122, 43924412, https://doi.org/10.1002/2017JC012753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morim, J., and Coauthors, 2019: Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Climate Change, 9, 711718, https://doi.org/10.1038/s41558-019-0542-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, https://doi.org/10.1029/JZ069i024p05181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma, 2004: Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Res. Lett., 31, L11303, https://doi.org/10.1029/2004GL019824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, W., L. Wu, J. Song, X. Li, F. Qiao, and A. Rutgersson, 2021: Momentum flux balance at the air-sea interface. J. Geophys. Res. Oceans, 126, e2020JC016563, https://doi.org/10.1029/2020JC016563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., and F. Ardhuin, 2013: A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modell., 70, 174188, https://doi.org/10.1016/j.ocemod.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans, 119, 3051, https://doi.org/10.1002/2013JC009289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B., Ø. Breivik, J.-R. Bidlot, P. Janssen, A. H. Callaghan, and B. Ward, 2016: Modelling whitecap fraction with a wave model. J. Phys. Oceanogr., 46, 887894, https://doi.org/10.1175/JPO-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., Ø. Saetra, A. Rutgersson, K. K. Kahma, and H. Pettersson, 2009: Wave-induced wind in the marine boundary layer. J. Atmos. Sci., 66, 22562271, https://doi.org/10.1175/2009JAS3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., K. Sušelj, A. Rutgersson, and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Climate, 24, 14611479, https://doi.org/10.1175/2010JCLI3718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., R. Vettor, Ø. Breivik, A. Sterl, M. Reistad, C. G. Soares, and D. Lima, 2015: The wind sea and swell waves climate in the Nordic seas. Ocean Dyn., 65, 223240, https://doi.org/10.1007/s10236-014-0788-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheldon, L., and A. Czaja, 2014: Seasonal and interannual variability of an index of deep atmospheric convection over western boundary currents. Quart. J. Roy. Meteor. Soc., 140, 2230, https://doi.org/10.1002/qj.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staneva, J., V. Alari, Ø. Breivik, J.-R. Bidlot, and K. Mogensen, 2017: Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dyn., 67, 81101, https://doi.org/10.1007/s10236-016-1009-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., and S. Caires, 2005: Climatology, variability and extrema of ocean waves: The web-based KNMI/ERA-40 wave atlas. Int. J. Climatol., 25, 963977, https://doi.org/10.1002/joc.1175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strand, K., Ø. Breivik, G. Pedersen, F. Vikebø, S. Sundby, and K. Christensen, 2020: Long-term statistics of observed bubble depth versus modeled wave dissipation. J. Geophys. Res. Oceans, 125, e2019JC015906, https://doi.org/10.1029/2019JC015906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. Donelan, Y. Agrawal, W. M. Drennan, K. Kahma, A. J. Williams, P. Hwang, and S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III TM version 3.14. Tech. Note, MMAB Contribution 276, 220 pp., https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.

    • Search Google Scholar
    • Export Citation
  • Tsagareli, K., A. V. Babanin, D. Walker, and I. Young, 2010: Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. J. Phys. Oceanogr., 40, 656666, https://doi.org/10.1175/2009JPO4345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Wang, D., H. Wijesekera, E. Jarosz, W. Teague, and W. Pegau, 2016: Turbulent diffusivity under high winds from acoustic measurements of bubbles. J. Phys. Oceanogr., 46, 15931613, https://doi.org/10.1175/JPO-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and F. Qiao, 2022: Wind profile in the wave boundary layer and its application in a coupled atmosphere-wave model. J. Geophys. Res. Oceans, 127, e2021JC018123, https://doi.org/10.1029/2021JC018123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., A. Rutgersson, E. Sahlée, and X. Guo Larsén, 2016: Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model. J. Geophys. Res. Oceans, 121, 46334648, https://doi.org/10.1002/2015JC011576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., A. Rutgersson, and E. Nilsson, 2017: Atmospheric boundary layer turbulence closure scheme for wind-following swell conditions. J. Atmos. Sci., 74, 23632382, https://doi.org/10.1175/JAS-D-16-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Ø. Breivik, and A. Rutgersson, 2019a: Ocean-wave-atmosphere interaction processes in a fully coupled modeling system. J. Adv. Model. Earth Syst., 11, 38523874, https://doi.org/10.1029/2019MS001761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., J. Staneva, Ø. Breivik, A. Rutgersson, A. G. Nurser, E. Clementi, and G. Madec, 2019b: Wave effects on coastal upwelling and water level. Ocean Modell., 140, 101405, https://doi.org/10.1016/j.ocemod.2019.101405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I., S. Zieger, and A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, https://doi.org/10.1126/science.1197219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Z., J. Song, P. Li, J. Huang, J. A. Zhang, Z. Wan, and S. Li, 2019: Effects of swell waves on atmospheric boundary layer turbulence: A low wind field study. J. Geophys. Res. Oceans, 124, 56715685, https://doi.org/10.1029/2019JC015153.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 320 320 16
Full Text Views 117 117 4
PDF Downloads 155 155 7

The Redistribution of Air–Sea Momentum and Turbulent Kinetic Energy Fluxes by Ocean Surface Gravity Waves

Lichuan WuaDepartment of Earth Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Lichuan Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0611-3543
,
Øyvind BreivikcNorwegian Meteorological Institute, Bergen, Norway
dUniversity of Bergen, Bergen, Norway

Search for other papers by Øyvind Breivik in
Current site
Google Scholar
PubMed
Close
, and
Fangli QiaobLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
eFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
fShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Search for other papers by Fangli Qiao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The momentum flux to the ocean interior is commonly assumed to be identical to the momentum flux lost from the atmosphere in traditional atmosphere, ocean, and coupled models. However, ocean surface gravity waves (hereafter waves) can alter the magnitude and direction of the ocean-side stress (τoc) from the air-side stress (τa). This is rarely considered in coupled climate and forecast models. Based on a 30-yr wave hindcast, the redistribution of the global wind stress and turbulent kinetic energy (TKE) flux by waves was investigated. Waves play a more important role in the windy oceans in middle and high latitudes than that in the oceans in the tropics (i.e., the central portion of the Pacific and Atlantic Oceans). On average, the relative difference between τoc and τa, γτ, can be up to 6% in middle and high latitudes. The frequency of occurrence of γτ > 9% can be up to 10% in the windy extratropics. The directional difference between τoc and τa exceeds 3.5° in the middle and high latitudes 10% of the time. The difference between τoc and τa becomes more significant closer to the coasts of the continents due to strong wind gradients. The friction velocity-based approach overestimates (underestimates) the breaking-induced TKE flux in the tropics (middle and high latitudes). The findings presented in the current study show that coupled climate and Earth system models would clearly benefit from the inclusion of a wave model.

Significance Statement

The purpose of this study is to investigate the redistribution of the global wind stress and turbulent kinetic energy flux due to surface waves based on a 30-yr wave hindcast. The mean relative difference of the magnitude between the air-side and ocean-side stress is up to 6% with a 90th percentile of more than 9% in the windy extratropics. Due to strong wind gradients, the redistributive role of waves in the stress becomes more significant closer to coasts. The results indicate that we should consider the redistributive role of waves in the momentum and energy fluxes in climate and Earth system models since they are the key elements in the predictability of weather forecasting models and climate models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lichuan Wu, lichuan.wu@geo.uu.se; wulichuan0704@gmail.com

Abstract

The momentum flux to the ocean interior is commonly assumed to be identical to the momentum flux lost from the atmosphere in traditional atmosphere, ocean, and coupled models. However, ocean surface gravity waves (hereafter waves) can alter the magnitude and direction of the ocean-side stress (τoc) from the air-side stress (τa). This is rarely considered in coupled climate and forecast models. Based on a 30-yr wave hindcast, the redistribution of the global wind stress and turbulent kinetic energy (TKE) flux by waves was investigated. Waves play a more important role in the windy oceans in middle and high latitudes than that in the oceans in the tropics (i.e., the central portion of the Pacific and Atlantic Oceans). On average, the relative difference between τoc and τa, γτ, can be up to 6% in middle and high latitudes. The frequency of occurrence of γτ > 9% can be up to 10% in the windy extratropics. The directional difference between τoc and τa exceeds 3.5° in the middle and high latitudes 10% of the time. The difference between τoc and τa becomes more significant closer to the coasts of the continents due to strong wind gradients. The friction velocity-based approach overestimates (underestimates) the breaking-induced TKE flux in the tropics (middle and high latitudes). The findings presented in the current study show that coupled climate and Earth system models would clearly benefit from the inclusion of a wave model.

Significance Statement

The purpose of this study is to investigate the redistribution of the global wind stress and turbulent kinetic energy flux due to surface waves based on a 30-yr wave hindcast. The mean relative difference of the magnitude between the air-side and ocean-side stress is up to 6% with a 90th percentile of more than 9% in the windy extratropics. Due to strong wind gradients, the redistributive role of waves in the stress becomes more significant closer to coasts. The results indicate that we should consider the redistributive role of waves in the momentum and energy fluxes in climate and Earth system models since they are the key elements in the predictability of weather forecasting models and climate models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lichuan Wu, lichuan.wu@geo.uu.se; wulichuan0704@gmail.com
Save