• Alberello, A., A. Dolatshah, L. G. Bennetts, M. Onorato, F. Nelli, and A. Toffoli, 2021: An experimental model of wave attenuation in pancake ice. Int. J. Offshore Polar Eng., 31, 263269, https://doi.org/10.17736/ijope.2021.ik08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alberello, A., and Coauthors, 2022: Three-dimensional imaging of waves and floe sizes in the marginal ice zone during an explosive cyclone. arXiv, 2103.08864, http://arxiv.org/abs/2103.08864.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., F. Collard, B. Chapron, F. Girard-Ardhuin, G. Guitton, A. Mouche, and J. E. Stopa, 2015: Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A. Geophys. Res. Lett., 42, 23172325, https://doi.org/10.1002/2014GL062940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2018: Wave attenuation through an Arctic marginal ice zone on 12 October 2015: 2. Numerical modeling of waves and associated ice breakup. J. Geophys. Res. Oceans, 123, 56525668, https://doi.org/10.1002/2018JC013784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., M. Otero, S. Merrifield, A. Grouazel, and E. Terrill, 2020: Ice breakup controls dissipation of wind waves across southern ocean sea ice. Geophys. Res. Lett., 47, e2020GL087699, https://doi.org/10.1029/2020GL087699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asplin, M. G., R. Galley, D. G. Barber, and S. Prinsenberg, 2012: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. J. Geophys. Res., 117, C06025, https://doi.org/10.1029/2011JC007221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateson, A. W., D. L. Feltham, D. Schröder, L. Hosekova, J. K. Ridley, and Y. Aksenov, 2020: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice. Cryosphere, 14, 403428, https://doi.org/10.5194/tc-14-403-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, L. G., and V. A. Squire, 2012a: Model sensitivity analysis of scattering-induced attenuation of ice-coupled waves. Ocean Modell., 45–46, 113, https://doi.org/10.1016/j.ocemod.2012.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, L. G., and V. A. Squire, 2012b: On the calculation of an attenuation coefficient for transects of ice-covered ocean. Proc. Roy. Soc., 468A, 136162, https://doi.org/10.1098/rspa.2011.0155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, L. G., and T. D. Williams, 2015: Water wave transmission by an array of floating discs. Proc. Roy. Soc., 471A, 20140698, https://doi.org/10.1098/rspa.2014.0698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, L. G., M. A. Peter, V. A. Squire, and M. H. Meylan, 2010: A three-dimensional model of wave attenuation in the marginal ice zone. J. Geophys. Res., 115, C12043, https://doi.org/10.1029/2009JC005982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, L. G., A. Alberello, M. H. Meylan, C. Cavaliere, A. V. Babanin, and A. Toffoli, 2015a: An idealised experimental model of ocean surface wave transmission by an ice floe. Ocean Modell., 96, 8592, https://doi.org/10.1016/j.ocemod.2015.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, L. G., S. O’Farrell, P. Uotila, and V. A. Squire, 2015b: An idealized wave-ice interaction model without subgrid spatial or temporal discretizations. Ann. Glaciol., 56, 258262, https://doi.org/10.3189/2015AoG69A599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, L., S. O’Farrell, and P. Uotila, 2017: Impacts of ocean-wave-induced breakup of antarctic sea ice via thermodynamics in a stand-alone version of the cice sea-ice model. Cryosphere, 11, 10351040, https://doi.org/10.5194/tc-11-1035-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutin, G., T. Williams, P. Rampal, E. Olason, and C. Lique, 2021: Wave–sea-ice interactions in a brittle rheological framework. Cryosphere, 15, 431457, https://doi.org/10.5194/tc-15-431-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabral, I. S., I. R. Young, and A. Toffoli, 2022: Long-term and seasonal variability of wind and wave extremes in the Arctic Ocean. Front. Mar. Sci., 9, 802022, https://doi.org/10.3389/fmars.2022.802022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, A. J., A. J. Bechle, and C. H. Wu, 2014: Observations of surface waves interacting with ice using stereo imaging. J. Geophys. Res. Oceans, 119, 32663284, https://doi.org/10.1002/2014JC009894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, S., and Coauthors, 2017: Calibrating a viscoelastic sea ice model for wave propagation in the Arctic Fall marginal ice zone. J. Geophys. Res. Oceans, 122, 87708793, https://doi.org/10.1002/2017JC013275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, S., A. Tsarau, K. U. Evers, and H. H. Shen, 2019: Floe size effect on gravity wave propagation through ice covers. J. Geophys. Res. Oceans, 124, 320334, https://doi.org/10.1029/2018JC014094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. O., III, W. E. Rogers, A. Marchenko, and A. V. Babanin, 2015: In situ measurements of an energetic wave event in the Arctic marginal ice zone. Geophys. Res. Lett., 42, 18631870, https://doi.org/10.1002/2015GL063063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crocker, G. B., and P. Wadhams, 1989: Breakup of Antarctic fast ice. Cold Reg. Sci. Technol., 17, 6176, https://doi.org/10.1016/S0165-232X(89)80016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derkani, M. H., and Coauthors, 2021: Wind, waves, and surface currents in the southern ocean: Observations from the Antarctic circumnavigation expedition. Earth Syst. Sci. Data, 13, 11891209, https://doi.org/10.5194/essd-13-1189-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doble, M. J., and J.-R. Bidlot, 2013: Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: Progress towards global waves-in-ice modelling. Ocean Modell., 70, 166173, https://doi.org/10.1016/j.ocemod.2013.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolatshah, A., F. Nelli, L. G. Bennetts, A. Alberello, M. H. Meylan, J. P. Monty, and A. Toffoli, 2018: Hydroelastic interactions between water waves and floating freshwater ice. Phys. Fluids, 30, 091702, https://doi.org/10.1063/1.5050262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumont, D., A. L. Kohout, and L. Bertino, 2011: A wave-based model for the marginal ice zone including a floe breaking parameterization. J. Geophys. Res., 116, C04001, https://doi.org/10.1029/2010JC006682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, C., and V. A. Squire, 1994: On the oblique reflexion and transmission of ocean waves at shore fast sea ice. Philos. Trans. Roy. Soc., A347, 185218, https://doi.org/10.1098/rsta.1994.0044.

    • Search Google Scholar
    • Export Citation
  • Golden, K. M., and Coauthors, 2020: Modeling sea ice. Not. Amer. Math. Soc., 67, 15351555, https://doi.org/10.1090/noti2171.

  • Grotmaack, R., and M. H. Meylan, 2006: Wave forcing of small floating bodies. J. Waterw. Port Coastal Ocean Eng., 132, 192198, https://doi.org/10.1061/(ASCE)0733-950X(2006)132:3(192).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, A., 2018: Wave-induced surge motion and collisions of sea ice floes: Finite-floe-size effects. J. Geophys. Res. Oceans, 123, 74727494, https://doi.org/10.1029/2018JC014500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, A., K.-U. Evers, and N. Reimer, 2018: Floe-size distributions in laboratory ice broken by waves. Cryosphere, 12, 685699, https://doi.org/10.5194/tc-12-685-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, A., M. Wenta, and S. Cheng, 2021: Sizes and shapes of sea ice floes broken by waves—A case study from the East Antarctic Coast. Front. Earth Sci., 9, 655977, https://doi.org/10.3389/feart.2021.655977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2010: Waves in Oceanic and Coastal Waters. Cambridge University Press, 404 pp.

  • Horvat, C., and E. Tziperman, 2015: A prognostic model of the sea-ice floe size and thickness distribution. Cryosphere, 9, 21192134, https://doi.org/10.5194/tc-9-2119-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jain, R., R. Kasturi, and B. G. Schunck, 1995: Machine Vision. McGraw-Hill, 549 pp.

  • Joseph, P., and J. Hennessey, 1978: A comparison of the Weibull and Rayleigh distributions for estimating wind power potential. Wind Eng., 2, 156164.

    • Search Google Scholar
    • Export Citation
  • Klein, M., M. Hartmann, and F. von Bock und Polach, 2021: Note on the application of transient wave packets for wave–ice interaction experiments. Water, 13, 1699, https://doi.org/10.3390/w13121699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohout, A. L., and M. H. Meylan, 2008: An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res., 113, C09016, https://doi.org/10.1029/2007JC004434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohout, A., M. Williams, S. Dean, and M. H. Meylan, 2014: Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509, 604607, https://doi.org/10.1038/nature13262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohout, A. L., M. J. M. Williams, T. Toyota, J. Lieser, and J. Hutchings, 2016: In situ observations of wave-induced sea ice breakup. Deep-Sea Res. II, 131, 2227, https://doi.org/10.1016/j.dsr2.2015.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohout, A. L., M. Smith, L. A. Roach, G. Williams, F. Montiel, and M. Williams, 2020: Observations of exponential wave attenuation in antarctic sea ice during the pipers campaign. Ann. Glaciol., 61, 196209, https://doi.org/10.1017/aog.2020.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1996: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 556 pp.

    • Search Google Scholar
    • Export Citation
  • Langhorne, P. J., V. A. Squire, C. Fox, and T. G. Haskell, 1998: Break-up of sea ice by ocean waves. Ann. Glaciol., 27, 438442, https://doi.org/10.3189/S0260305500017869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and K. Riska, 1996: Preliminary Study of Physical and Mechanical Properties of Model Ice. Helsinki University of Technology, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Mansard, E. P. D., and E. R. Funke, 1980: The measurement of incident and reflected spectra using a least squares method. Coast. Eng., 1980, 154172, https://doi.org/10.1061/9780872622647.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massom, R. A., and S. E. Stammerjohn, 2010: Antarctic sea ice change and variability: Physical and ecological implications. Polar Sci., 4, 149186, https://doi.org/10.1016/j.polar.2010.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., L. Bennetts, and A. L. Kohout, 2014: In situ measurements and analysis of ocean waves in the antarctic marginal ice zone. Geophys. Res. Lett., 41, 50465051, https://doi.org/10.1002/2014GL060809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., L. Bennetts, J. E. M. Mosig, W. E. Rogers, M. J. Doble, and M. A. Peter, 2018: Dispersion relations, power laws, and energy loss for waves in the marginal ice zone. J. Geophys. Res. Oceans, 123, 33223335, https://doi.org/10.1002/2018JC013776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., W. Perrie, B. Toulany, Y. Hu, and M. P. Casey, 2020: On the three-dimensional scattering of waves by flexible marginal ice floes. J. Geophys. Res. Oceans, 125, https://doi.org/10.1029/2019JC015868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., C. Horvat, C. M. Bitz, and L. G. Bennetts, 2021: A floe size dependent scattering model in two- and three-dimensions for wave attenuation by ice floes. Ocean Modell., 161, 101779, https://doi.org/10.1016/j.ocemod.2021.101779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montiel, F., and V. A. Squire, 2017: Modelling wave-induced sea ice break-up in the marginal ice zone. Proc. Roy. Soc., 473A, 20170258, https://doi.org/10.1098/rspa.2017.0258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montiel, F., V. A. Squire, M. Doble, J. Thomson, and P. Wadhams, 2018: Attenuation and directional spreading of ocean waves during a storm event in the autumn Beaufort Sea marginal ice zone. J. Geophys. Res. Oceans, 123, 59125932, https://doi.org/10.1029/2018JC013763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosig, J. E. M., F. Montiel, and V. A. Squire, 2015: Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered seas. J. Geophys. Res. Oceans, 120, 60726090, https://doi.org/10.1002/2015JC010881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulchrone, K. F., and K. R. Choudhury, 2004: Fitting an ellipse to an arbitrary shape: Implications for strain analysis. J. Struct. Geol., 26, 143153, https://doi.org/10.1016/S0191-8141(03)00093-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelli, F., L. Bennetts, D. M. Skene, J. P. Monty, J. H. Lee, M. H. Meylan, and A. Toffoli, 2017: Reflection and transmission of regular water waves by a thin, floating plate. Wave Motion, 70, 209221, https://doi.org/10.1016/j.wavemoti.2016.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelli, F., L. Bennetts, D. M. Skene, and A. Toffoli, 2020: Water wave transmission and energy dissipation by a floating plate in the presence of overwash. J. Fluid Mech., 889, A19, https://doi.org/10.1017/jfm.2020.75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochi, M. K., 2005: Ocean Waves: The Stochastic Approach. Cambridge University Press, 332 pp.

  • Onorato, M., and Coauthors, 2009: Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three-dimensional wave basin. J. Fluid Mech., 627, 235257, https://doi.org/10.1017/S002211200900603X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parra, S. M., D. K. K. Sree, D. Wang, E. Rogers, J. H. Lee, C. O. Collins, A. W.-K. Law, and A. V. Babanin, 2020: Experimental study on surface wave modifications by different ice covers. Cold Reg. Sci. Technol., 174, 103042, https://doi.org/10.1016/j.coldregions.2020.103042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prinsenberg, S. J., and I. K. Peterson, 2011: Observing regional-scale pack-ice decay processes with helicopter-borne sensors and moored upward-looking sonars. Ann. Glaciol., 52, 3542, https://doi.org/10.3189/172756411795931688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeve, D., A. Chadwick, and C. Fleming, 2018 : Coastal Engineering: Processes, Theory and Design Practice. CRC Press, 542 pp.

  • Roach, L. A., C. M. Bitz, C. Horvat, and S. M. Dean, 2019: Advances in modeling interactions between sea ice and ocean surface waves. J. Adv. Model. Earth Syst., 11, 41674181, https://doi.org/10.1029/2019MS001836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., M. H. Meylan, and A. L. Kohout, 2021: Estimates of spectral wave attenuation in Antarctic sea ice, using model/data inversion. Cold Reg. Sci. Technol., 182, 103198, https://doi.org/10.1016/j.coldregions.2020.103198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J., 1977: New developments in modeling ice problems. Proc. 4th Int. Conf. on Port and Ocean Engineering Under Arctic Conditions, St. Johns, NL, Canada, Memorial University of Newfoundland, 4561.

    • Search Google Scholar
    • Export Citation
  • Skene, D. M., and L. G. Bennetts, 2021: A transition-loss theory for waves reflected and transmitted by an overwashed body. SIAM J. Appl. Math., 81, 834852, https://doi.org/10.1137/20M1386979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skene, D. M., L. G. Bennetts, M. H. Meylan, and A. Toffoli, 2015: Modelling water wave overwash of a thin floating plate. J. Fluid Mech., 777, R3, https://doi.org/10.1017/jfm.2015.378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, V. A., 2011: Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos. Trans. Roy. Soc., A369, 28132831, https://doi.org/10.1098/rsta.2011.0093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, V. A., 2020: Ocean wave interactions with sea ice: A reappraisal. Annu. Rev. Fluid Mech., 52, 3760, https://doi.org/10.1146/annurev-fluid-010719-060301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., J. Brozena, W. E. Rogers, M. Doble, and P. Wadhams, 2018: Airborne remote sensing of wave propagation in the marginal ice zone. J. Geophys. Res. Oceans, 123, 41324152, https://doi.org/10.1029/2018JC013785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., and Coauthors, 2018: Overview of the Arctic Sea state and boundary layer physics program. J. Geophys. Res. Oceans, 123, 86748687, https://doi.org/10.1002/2018JC013766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timco, G. W., and W. F. Weeks, 2010: A review of the engineering properties of sea ice. Cold Reg. Sci. Technol., 60, 107129, https://doi.org/10.1016/j.coldregions.2009.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., A. Babanin, M. Onorato, and T. Waseda, 2010: Maximum steepness of oceanic waves: Field and laboratory experiments. Geophys. Res. Lett., 37, L05603, https://doi.org/10.1029/2009GL041771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., L. G. Bennetts, M. H. Meylan, C. Cavaliere, A. Alberello, J. Elsnab, and J. P. Monty, 2015a: Sea ice floes dissipate the energy of steep ocean waves. Geophys. Res. Lett., 42, 85478554, https://doi.org/10.1002/2015GL065937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., T. Waseda, H. Houtani, L. Cavaleri, D. Greaves, and M. Onorato, 2015b: Rogue waves in opposing currents: An experimental study on deterministic and stochastic wave trains. J. Fluid Mech., 769, 277297, https://doi.org/10.1017/jfm.2015.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, G. L., and V. A. Squire, 2011: Wave induced fracture probabilities for Arctic sea-ice. Cold Reg. Sci. Technol., 67, 3136, https://doi.org/10.1016/j.coldregions.2011.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vichi, M., and Coauthors, 2019: Effects of an explosive polar cyclone crossing the Antarctic marginal ice zone. Geophys. Res. Lett., 46, 59485958, https://doi.org/10.1029/2019GL082457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voermans, J. J., and Coauthors, 2020: Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up. Cryosphere, 14, 42654278, https://doi.org/10.5194/tc-14-4265-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Bock und Polach, R. U. F., 2015: Numerical analysis of the bending strength of model-scale ice. Cold Reg. Sci. Technol., 118, 91104, https://doi.org/10.1016/j.coldregions.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Bock und Polach, R., R., S. Ehlers, and P. Kujala, 2013: Model-scale ice part a: Experiments. Cold Reg. Sci. Technol., 94, 7481, https://doi.org/10.1016/j.coldregions.2013.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Bock und Polach, R. U. F., R. Ettema, S. Gralher, L. Kellner, and M. Stender, 2019: The non-linear behavior of aqueous model ice in downward flexure. Cold Reg. Sci. Technol., 165, 102775, https://doi.org/10.1016/j.coldregions.2019.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Bock und Polach, F., M. Klein, and M. Hartmann, 2021: A new model ice for wave-ice interaction. Water, 13, 3397, https://doi.org/10.3390/w13233397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, T. D., L. Bennetts, V. A. Squire, D. Dumont, and L. Bertino, 2013a: Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Modell., 71, 8191, https://doi.org/10.1016/j.ocemod.2013.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, T. D., L. G. Bennetts, V. A. Squire, D. Dumont, and L. Bertino, 2013b: Wave–ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Modell., 71, 92101, https://doi.org/10.1016/j.ocemod.2013.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, T. D., P. Rampal, and S. Bouillon, 2017: Wave–ice interactions in the nextsim sea-ice model. Cryosphere, 11, 21172135, https://doi.org/10.5194/tc-11-2117-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiew, L. J., L. G. Bennetts, M. H. Meylan, G. A. Thomas, and B. J. French, 2017: Wave-induced collisions of thin floating disks. Phys. Fluids, 29, 127102, https://doi.org/10.1063/1.5003310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and X. Zhao, 2021: Theoretical model for predicting the break-up of ice covers due to wave-ice interaction. Appl. Ocean Res., 112, 102614, https://doi.org/10.1016/j.apor.2021.102614.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 954 853 46
Full Text Views 161 125 3
PDF Downloads 173 143 1

Interactions between Irregular Wave Fields and Sea Ice: A Physical Model for Wave Attenuation and Ice Breakup in an Ice Tank

Giulio PasserottiaThe University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Giulio Passerotti in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3112-6856
,
Luke G. BennettsbUniversity of Adelaide, Adelaide, South Australia, Australia

Search for other papers by Luke G. Bennetts in
Current site
Google Scholar
PubMed
Close
,
Franz von Bock und PolachcHamburg University of Technology, Hamburg, Germany
dUniversität Hamburg, Hamburg, Germany

Search for other papers by Franz von Bock und Polach in
Current site
Google Scholar
PubMed
Close
,
Alberto AlberelloeUniversità di Torino, Turin, Italy

Search for other papers by Alberto Alberello in
Current site
Google Scholar
PubMed
Close
,
Otto PuolakkafAalto University, Helsinki, Finland

Search for other papers by Otto Puolakka in
Current site
Google Scholar
PubMed
Close
,
Azam DolatshahaThe University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Azam Dolatshah in
Current site
Google Scholar
PubMed
Close
,
Jaak MonbaliugKU Leuven, Leuven, Belgium

Search for other papers by Jaak Monbaliu in
Current site
Google Scholar
PubMed
Close
, and
Alessandro ToffoliaThe University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Alessandro Toffoli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Irregular, unidirectional surface water waves incident on model ice in an ice tank are used as a physical model of ocean surface wave interactions with sea ice. Results are given for an experiment consisting of three tests, starting with a continuous ice cover and in which the incident wave steepness increases between tests. The incident waves range from causing no breakup of the ice cover to breakup of the full length of ice cover. Temporal evolution of the ice edge, breaking front, and mean floe sizes are reported. Floe size distributions in the different tests are analyzed. The evolution of the wave spectrum with distance into the ice-covered water is analyzed in terms of changes of energy content, mean wave period, and spectral bandwidth relative to their incident counterparts, and pronounced differences are found between the tests. Further, an empirical attenuation coefficient is derived from the measurements and shown to have a power-law dependence on frequency comparable to that found in field measurements. Links between wave properties and ice breakup are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Alberello’s current affiliation: University of East Anglia, Norwich, United Kingdom.

Dolatshah’s current affiliation: BMT Commercial Australia Pty Ltd, Australia.

Corresponding authors: Giulio Passerotti, giuliopasserotti@gmail.com; Alessandro Toffoli, toffoli.alessandro@gmail.com

Abstract

Irregular, unidirectional surface water waves incident on model ice in an ice tank are used as a physical model of ocean surface wave interactions with sea ice. Results are given for an experiment consisting of three tests, starting with a continuous ice cover and in which the incident wave steepness increases between tests. The incident waves range from causing no breakup of the ice cover to breakup of the full length of ice cover. Temporal evolution of the ice edge, breaking front, and mean floe sizes are reported. Floe size distributions in the different tests are analyzed. The evolution of the wave spectrum with distance into the ice-covered water is analyzed in terms of changes of energy content, mean wave period, and spectral bandwidth relative to their incident counterparts, and pronounced differences are found between the tests. Further, an empirical attenuation coefficient is derived from the measurements and shown to have a power-law dependence on frequency comparable to that found in field measurements. Links between wave properties and ice breakup are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Alberello’s current affiliation: University of East Anglia, Norwich, United Kingdom.

Dolatshah’s current affiliation: BMT Commercial Australia Pty Ltd, Australia.

Corresponding authors: Giulio Passerotti, giuliopasserotti@gmail.com; Alessandro Toffoli, toffoli.alessandro@gmail.com

Supplementary Materials

    • Supplemental Materials (ZIP 89.8 MB)
Save