• Apmann, R. P., 1964: A case history in theory and experiment: Fluid flow in bends. Isis, 55, 427434, https://doi.org/10.1086/349899.

  • Armi, L., and D. Farmer, 1986: Maximal two-layer exchange through a contraction with barotropic net flow. J. Fluid Mech., 164, 2751, https://doi.org/10.1017/S0022112086002458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., M. T. Stacey, L. Umlauf, and H. Burchard, 2015: Lateral circulation generates flood tide stratification and estuarine exchange flow in a curved tidal inlet. J. Phys. Oceanogr., 45, 638656, https://doi.org/10.1175/JPO-D-14-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bo, T., and D. K. Ralston, 2020: Flow separation and increased drag coefficient in estuarine channels with curvature. J. Geophys. Res. Oceans, 125, e2020JC016267, https://doi.org/10.1029/2020JC016267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bo, T., D. K. Ralston, W. M. Kranenburg, W. R. Geyer, and P. Traykovski, 2021: High and variable drag in a sinuous estuary with intermittent stratification. J. Geophys. Res. Oceans, 126, e2021JC017327, https://doi.org/10.1029/2021JC017327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., and H. Rennau, 2008: Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Modell., 20, 293311, https://doi.org/10.1016/j.ocemod.2007.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., R. D. Hetland, E. Schulz, and H. M. Schuttelaars, 2011: Drivers of residual estuarine circulation in tidally energetic estuaries: Straight and irrotational channels with parabolic cross section. J. Phys. Oceanogr., 41, 548570, https://doi.org/10.1175/2010JPO4453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, H. H., 1984: Variation of flow resistance through curved channels. J. Hydraul. Eng., 110, 17721782, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1772).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chant, R. J., and R. E. Wilson, 1997: Secondary circulation in a highly stratified estuary. J. Geophys. Res., 102, 23 20723 215, https://doi.org/10.1029/97JC00685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dronkers, J. J., 1964: Tidal Computations in Rivers and Coastal Waters. North-Holland Publishing Company, 518 pp.

  • Edwards, K. A., P. MacCready, J. N. Moum, G. Pawlak, J. M. Klymak, and A. Perlin, 2004: Form drag and mixing due to tidal flow past a sharp point. J. Phys. Oceanogr., 34, 12971312, https://doi.org/10.1175/1520-0485(2004)034<1297:FDAMDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fagherazzi, S., E. J. Gabet, and D. J. Furbish, 2004: The effect of bidirectional flow on tidal channel planforms. Earth Surf. Processes Landforms, 29, 295309, https://doi.org/10.1002/esp.1016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and J. D. Smith, 1980: Tidal interaction of stratified flow with a sill in knight inlet. Deep-Sea Res., 27A, 239254, https://doi.org/10.1016/0198-0149(80)90015-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, A. M. P., W. R. Geyer, and N. Randall, 2021: Exchange flows in tributary creeks enhance dispersion by tidal trapping. Estuaries Coasts, 45, 363381, https://doi.org/10.1007/s12237-021-00969-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1974: Dynamics of small-scale oceanic fronts. J. Phys. Oceanogr., 4, 557569, https://doi.org/10.1175/1520-0485(1974)004<0557:DOSSOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G., and D. C. Chapman, 1992: The role of stratification in the formation and maintenance of shelf-break fronts. J. Phys. Oceanogr., 22, 753772, https://doi.org/10.1175/1520-0485(1992)022<0753:TROSIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., 1993a: The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries, 16, 113125, https://doi.org/10.2307/1352769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., 1993b: Three-dimensional tidal flow around headlands. J. Geophys. Res., 98, 955966, https://doi.org/10.1029/92JC02270.

  • Geyer, W. R., and D. K. Ralston, 2011: The dynamics of strongly stratified estuaries. Treatise on Estuarine and Coastal Science, E. Wolanski and D. McLusky, Eds., Academic Press, 3751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and P. MacCready, 2014: The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197, https://doi.org/10.1146/annurev-fluid-010313-141302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and D. K. Ralston, 2015: Estuarine frontogenesis. J. Phys. Oceanogr., 45, 546561, https://doi.org/10.1175/JPO-D-14-0082.1.

  • Geyer, W. R., D. K. Ralston, and R. C. Holleman, 2017: Hydraulics and mixing in a laterally divergent channel of a highly stratified estuary. J. Geophys. Res. Oceans, 122, 47434760, https://doi.org/10.1002/2016JC012455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., D. K. Ralston, and J.-L. Chen, 2020: Mechanisms of exchange flow in an estuary with a narrow, deep channel and wide, shallow shoals. J. Geophys. Res. Oceans, 125, e2020JC016092, https://doi.org/10.1029/2020JC016092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1982: Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res., 87, 469481, https://doi.org/10.1029/JC087iC01p00469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, C., 1994: Evaluation of methods for predicting bend loss in meandering channels. J. Hydraul. Eng., 120, 245253, https://doi.org/10.1061/(ASCE)0733-9429(1994)120:2(245).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalra, T. S., X. Li, J. C. Warner, W. R. Geyer, and H. Wu, 2019: Comparison of physical to numerical mixing with different tracer advection schemes in estuarine environments. J. Mar. Sci. Eng., 7, 338, https://doi.org/10.3390/jmse7100338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kranenburg, W. M., W. R. Geyer, A. M. P. Garcia, and D. K. Ralston, 2019: Reversed lateral circulation in a sharp estuarine bend with weak stratification. J. Phys. Oceanogr., 49, 16191637, https://doi.org/10.1175/JPO-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacy, J. R., and S. G. Monismith, 2001: Secondary currents in a curved, stratified, estuarine channel. J. Geophys. Res., 106, 31 28331 302, https://doi.org/10.1029/2000JC000606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacy, J. R., M. T. Stacey, J. R. Burau, and S. G. Monismith, 2003: Interaction of lateral baroclinic forcing and turbulence in an estuary. J. Geophys. Res., 108, 3089, https://doi.org/10.1029/2002JC001392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langbein, W. B., 1963: The hydraulic geometry of a shallow estuary. Hydrol. Sci. J., 8, 8494, https://doi.org/10.1080/02626666309493340.

    • Search Google Scholar
    • Export Citation
  • Langbein, W. B., and L. B. Leopold, 1970: River meanders and the theory of minimum variance. Rivers and River Terraces, Springer, 238263.

  • Leeder, M. R., and P. H. Bridges, 1975: Flow separation in meander bends. Nature, 253, 338339, https://doi.org/10.1038/253338a0.

  • Leopold, L. B., 1960: Flow Resistance in Sinuous or Irregular Channels. US Government Printing Office, 24 pp.

  • Leopold, L. B., and M. G. Wolman, 1960: River meanders. Geol. Soc. Amer. Bull., 71, 769793, https://doi.org/10.1130/0016-7606(1960)71[769:RM]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., and W. R. Geyer, 2004: Modeling the lateral circulation in straight, stratified estuaries. J. Phys. Oceanogr., 34, 14101428, https://doi.org/10.1175/1520-0485(2004)034<1410:MTLCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W. R. Geyer, J. Zhu, and H. Wu, 2018: The transformation of salinity variance: A new approach to quantifying the influence of straining and mixing on estuarine stratification. J. Phys. Oceanogr., 48, 607623, https://doi.org/10.1175/JPO-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, D. G., and W. R. Geyer, 2005: Hydraulic control of a highly stratified estuarine front. J. Phys. Oceanogr., 35, 374387, https://doi.org/10.1175/JPO-2692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marani, M., S. Lanzoni, D. Zandolin, G. Seminara, and A. Rinaldo, 2002: Tidal meanders. Water Resour. Res., 38, 1225, https://doi.org/10.1029/2001WR000404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2021: Oceanic frontogenesis. Annu. Rev. Mar. Sci., 13, 227253, https://doi.org/10.1146/annurev-marine-032320-120725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidzieko, N. J., J. L. Hench, and S. G. Monismith, 2009: Lateral circulation in well-mixed and stratified estuarine flows with curvature. J. Phys. Oceanogr., 39, 831851, https://doi.org/10.1175/2008JPO4017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunes, R., and J. Simpson, 1985: Axial convergence in a well-mixed estuary. Estuarine Coastal Shelf Sci., 20, 637649, https://doi.org/10.1016/0272-7714(85)90112-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pein, J., A. Valle-Levinson, and E. V. Stanev, 2018: Secondary circulation asymmetry in a meandering, partially stratified estuary. J. Geophys. Res. Oceans, 123, 16701683, https://doi.org/10.1002/2016JC012623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralston, D. K., and M. T. Stacey, 2005a: Longitudinal dispersion and lateral circulation in the intertidal zone. J. Geophys. Res., 110, C07015, https://doi.org/10.1029/2005JC002888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralston, D. K., and M. T. Stacey, 2005b: Stratification and turbulence in subtidal channels through intertidal mudflats. J. Geophys. Res., 110, C08009, https://doi.org/10.1029/2004JC002650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralston, D. K., G. W. Cowles, W. R. Geyer, and R. C. Holleman, 2017: Turbulent and numerical mixing in a saltwedge estuary: Dependence on grid resolution, bottom roughness, and turbulence closure. J. Geophys. Res. Oceans, 122, 692712, https://doi.org/10.1002/2016JC011738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozovskii, I. L., 1957: Flow of Water in Bends of Open Channels. Academy of Sciences of the Ukrainian SSR, 233 pp.

  • Scully, M. E., W. R. Geyer, and J. A. Lerczak, 2009: The influence of lateral advection on the residual estuarine circulation: A numerical modeling study of the Hudson River Estuary. J. Phys. Oceanogr., 39, 107124, https://doi.org/10.1175/2008JPO3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1997: The importance of aspiration and channel curvature in producing strong vertical mixing over a sill. J. Geophys. Res., 102, 34513472, https://doi.org/10.1029/96JC03415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and R. Nunes, 1981: The tidal intrusion front: An estuarine convergence zone. Estuarine Coastal Shelf Sci., 13, 257266, https://doi.org/10.1016/S0302-3524(81)80024-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and P. Linden, 1989: Frontogenesis in a fluid with horizontal density gradients. J. Fluid Mech., 202, 116, https://doi.org/10.1017/S0022112089001072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., J. Brown, J. Matthews, and G. Allen, 1990: Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries, 13, 125132, https://doi.org/10.2307/1351581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., 1982: Where to put a steady discharge in a river. J. Fluid Mech., 115, 111, https://doi.org/10.1017/S0022112082000615.

  • Soulsby, R., 1990: Tidal current boundary layers. Ocean Engineering Science, B. Le Méhauté and D. M. Hanes, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 9B, John Wiley & Sons, 523566.

    • Search Google Scholar
    • Export Citation
  • Stacey, M. T., J. R. Burau, and S. G. Monismith, 2001: Creation of residual flows in a partially stratified estuary. J. Geophys. Res., 106, 17 01317 037, https://doi.org/10.1029/2000JC000576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacey, M. T., T. Rippeth, and J. D. Nash, 2011: Turbulence and stratification in estuaries and coastal seas. Treatise on Estuarine and Coastal Science, E. Wolanski and D. S. McLusky, Eds., Elsevier, 935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sternberg, R., 1968: Friction factors in tidal channels with differing bed roughness. Mar. Geol., 6, 243260, https://doi.org/10.1016/0025-3227(68)90033-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., 1877: V. On the origin of windings of rivers in alluvial plains, with remarks on the flow of water round bends in pipes. Proc. Roy. Soc. London, 25, 58, https://doi.org/10.1098/RSPL.1876.0004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265, https://doi.org/10.1357/002224003322005087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., 2008: Density-driven exchange flow in terms of the Kelvin and Ekman numbers. J. Geophys. Res., 113, C04001, https://doi.org/10.1029/2007JC004144.

    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., 2011: Large estuaries (effects of rotation). Treatise on Estuarine and Coastal Science, E. Wolanski and D. McLusky, Eds., Academic Press, 123139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango, 2008: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci., 34, 12841306, https://doi.org/10.1016/j.cageo.2008.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., W. R. Geyer, D. K. Ralston, and T. Kalra, 2020: Using tracer variance decay to quantify variability of salinity mixing in the Hudson River Estuary. J. Geophys. Res. Oceans, 125, e2020JC016096, https://doi.org/10.1029/2020JC016096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., and P. MacCready, 2014: The dynamics of pressure and form drag on a sloping headland: Internal waves versus eddies. J. Geophys. Res. Oceans, 119, 15541571, https://doi.org/10.1002/2013JC009757.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 358 360 15
Full Text Views 179 179 5
PDF Downloads 222 222 7

Frontogenesis, Mixing, and Stratification in Estuarine Channels with Curvature

Tong BoaApplied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
bMIT–WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, Massachusetts

Search for other papers by Tong Bo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6030-0561
and
David K. RalstonaApplied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by David K. Ralston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Idealized numerical simulations were conducted to investigate the influence of channel curvature on estuarine stratification and mixing. Stratification is decreased and tidal energy dissipation is increased in sinuous estuaries compared to straight channel estuaries. We applied a vertical salinity variance budget to quantify the influence of straining and mixing on stratification. Secondary circulation due to the channel curvature is found to affect stratification in sinuous channels through both lateral straining and enhanced vertical mixing. Alternating negative and positive lateral straining occur in meanders upstream and downstream of the bend apex, respectively, corresponding to the normal and reversed secondary circulation with curvature. The vertical mixing is locally enhanced in curved channels with the maximum mixing located upstream of the bend apex. Bend-scale bottom salinity fronts are generated near the inner bank upstream of the bend apex as a result of interaction between the secondary flow and stratification. Shear mixing at bottom fronts, instead of overturning mixing by the secondary circulation, provides the dominant mechanism for destruction of stratification. Channel curvature can also lead to increased drag, and using a Simpson number with this increased drag coefficient can relate the decrease in stratification with curvature to the broader estuarine parameter space.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tong Bo, tongbo@mit.edu

Abstract

Idealized numerical simulations were conducted to investigate the influence of channel curvature on estuarine stratification and mixing. Stratification is decreased and tidal energy dissipation is increased in sinuous estuaries compared to straight channel estuaries. We applied a vertical salinity variance budget to quantify the influence of straining and mixing on stratification. Secondary circulation due to the channel curvature is found to affect stratification in sinuous channels through both lateral straining and enhanced vertical mixing. Alternating negative and positive lateral straining occur in meanders upstream and downstream of the bend apex, respectively, corresponding to the normal and reversed secondary circulation with curvature. The vertical mixing is locally enhanced in curved channels with the maximum mixing located upstream of the bend apex. Bend-scale bottom salinity fronts are generated near the inner bank upstream of the bend apex as a result of interaction between the secondary flow and stratification. Shear mixing at bottom fronts, instead of overturning mixing by the secondary circulation, provides the dominant mechanism for destruction of stratification. Channel curvature can also lead to increased drag, and using a Simpson number with this increased drag coefficient can relate the decrease in stratification with curvature to the broader estuarine parameter space.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tong Bo, tongbo@mit.edu
Save