• Alday, M., M. Accensi, F. Ardhuin, and G. Dodet, 2021: A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean Modell., 166, 101848, https://doi.org/10.1016/j.ocemod.2021.101848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, J.-H. G., and M. L. Banner, 2003: Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33, 12741298, https://doi.org/10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, J.-H. G., A. Chawla, H. L. Tolman, D. Schwab, G. Lang, and G. Mann, 2014: The operational implementation of a Great Lakes wave forecasting system at NOAA/NCEP. Wea. Forecasting, 29, 14731497, https://doi.org/10.1175/WAF-D-12-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, https://doi.org/10.1175/2010JPO4324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and I. R. Young, 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr., 24, 15501571, https://doi.org/10.1175/1520-0485(1994)024<1550:MSDITE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréon, F. M., and N. Henriot, 2006: Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geophys. Res., 111, C06005, https://doi.org/10.1029/2005JC003343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and S. E. Belcher, 2000: Effects of long waves on wind-generated waves. J. Phys. Oceanogr., 30, 22462256, https://doi.org/10.1175/1520-0485(2000)030<2246:EOLWOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and W. Munk, 1954a: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 44A, 838850, https://doi.org/10.1364/JOSA.44.000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and W. Munk, 1954b: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198227.

  • Donelan, M. A., 2001: A nonlinear dissipation function due to wave breaking. Proc. of ECMWF Workshop on Ocean Wave Forecasting, 2–4 July, ECMWF, Reading, United Kingdom, 8794, https://www.ecmwf.int/node/9094.

  • Duennebier, F. K., R. Lukas, E. M. Nosal, J. Aucan, and R. A. Weller, 2012: Wind, waves, and acoustic background levels at Station ALOHA. J. Geophys. Res., 117, C03017, https://doi.org/10.1029/2011JC007267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., 1998: Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr., 28, 495512, https://doi.org/10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, W. E., and W. Munk, 2008: What do deep sea pressure fluctuations tell about short surface waves? Geophys. Res. Lett., 35, 811, https://doi.org/10.1029/2008GL035008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimaraes, P. V., 2018: Sea surface and energy dissipation. Ph.D. thesis, Université Bretagne Loire, 204 pp.

  • Hasselmann, K., 1963: A statistical analysis of the generation of microseisms. Rev. Geophys., 1, 177210, https://doi.org/10.1029/RG001i002p00177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., and K. Hasselmann, 1985a: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15, 13691377, https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., and K. Hasselmann, 1985b: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, B., 1976: Estimates of underwater sound (and infrasound) produced by nonlinearly interacting ocean waves. J. Acoust. Soc. Amer., 60, 10321039, https://doi.org/10.1121/1.381203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, 2000: Airborne measurements of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys. Oceanogr., 30, 27682787, https://doi.org/10.1175/1520-0485(2001)031<2768:AMOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1989: Wave-induced stress and drag of air flow over sea waves. J. Phys. Oceanogr., 19, 745754, https://doi.org/10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., S. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenain, L., and W. K. Melville, 2017: Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves. J. Phys. Oceanogr., 47, 21232138, https://doi.org/10.1175/JPO-D-17-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenain, L., N. M. Statom, and W. K. Melville, 2019: Airborne measurements of surface wind and slope statistics over the ocean. J. Phys. Oceanogr., 49, 27992814, https://doi.org/10.1175/JPO-D-19-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., W. E. Rogers, A. V. Babanin, I. R. Young, L. Romero, S. Zieger, F. Qiao, and C. Guan, 2019: Observation-based source terms in the third-generation wave model WAVEWATCH III: Updates and verification. J. Phys. Oceanogr., 49, 489517, https://doi.org/10.1175/JPO-D-18-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. E., and D. T. Resio, 2007: Wind wave spectral observations in Currituck Sound, North Carolina. J. Geophys. Res., 112, C05001, https://doi.org/10.1029/2006JC003835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1950: A theory of the origin of microseisms. Philos. Trans. Roy. Soc., A243, 135, https://doi.org/10.1098/rsta.1950.0012.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1976: On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: A simplified model. Proc. Roy. Soc., 347A, 311328, https://doi.org/10.1098/rspa.1976.0003.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 2009: An inconvenient sea truth: Spread, steepness, and skewness of surface slopes. Annu. Rev. Mar. Sci., 1, 377415, https://doi.org/10.1146/annurev.marine.010908.163940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peureux, C., A. Benetazzo, and F. Ardhuin, 2018: Note on the directional properties of meter-scale gravity waves. Ocean Sci., 14, 4152, https://doi.org/10.5194/os-14-41-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peureux, C., F. Ardhuin, and P. V. Guimarães, 2021: On the unsteady steepening of short gravity waves near the crests of longer waves in the absence of generation or dissipation. J. Geophys. Res. Oceans, 126, e2020JC016735, https://doi.org/10.1029/2020JC016735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417, https://doi.org/10.1017/S0022112057000233.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, https://doi.org/10.1017/S0022112085002221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E. W., A. V. Babanin, and D. W. Wang, 2012: Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. J. Atmos. Oceanic Technol., 29, 13291346, https://doi.org/10.1175/JTECH-D-11-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., 2019: Distribution of surface wave breaking fronts. Geophys. Res. Lett., 46, 10 46310 474, https://doi.org/10.1029/2019GL083408.

  • Romero, L., and W. K. Melville, 2010a: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, https://doi.org/10.1175/2009JPO4127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010b: Numerical modeling of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 466486, https://doi.org/10.1175/2009JPO4128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2011: Spatial statistics of the sea surface in fetch-limited conditions. J. Phys. Oceanogr., 41, 18211841, https://doi.org/10.1175/2011JPO4535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., W. K. Melville, and J. M. Kleiss, 2012: Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr., 42, 14211444, https://doi.org/10.1175/JPO-D-11-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett., 40, 30743079, https://doi.org/10.1002/grl.50584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., M. Onorato, E. M. Bitner-Gregersen, and J. Monbaliu, 2010: Development of a bimodal structure in ocean wave spectra. J. Geophys. Res., 115, C03006, https://doi.org/10.1029/2009JC005495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracy, B., and D. T. Resio, 1982: Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WIS Tech. Rep. 11, Hydraulics Lab, U.S. Army Engineer Waterways Experiment Station, 50 pp., https://apps.dtic.mil/sti/pdfs/ADA117989.pdf.

    • Search Google Scholar
    • Export Citation
  • van Vledder, G. P., 2006: The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models. Coast. Eng., 53, 223242, https://doi.org/10.1016/j.coastaleng.2005.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WW3DG, 2019: User manual and system documentation of WAVEWATCH III version 6.07. Tech. Rep., NOAA/NWS/NCEP/MMAB Tech. Note 333, 465 pp.

  • Young, I. R., 1995: The determination of confidence limits associated with estimates of the spectral peak frequency. Ocean Eng., 22, 669686, https://doi.org/10.1016/0029-8018(95)00002-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and G. P. Van Vledder,1993: A review of the central role of nonlinear interactions in wind-wave evolution. Philos. Trans. Roy. Soc., A342, 505524, https://doi.org/10.1098/rsta.1993.0030.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., L. A. Verhagen, and M. L. Banner, 1995: A note on the bimodal directional spreading of fetch-limited wind waves. J. Geophys. Res., 100, 773778, https://doi.org/10.1029/94JC02218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zieger, S., A. V. Babanin, W. Erick Rogers, and I. R. Young, 2015: Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modell., 96, 225, https://doi.org/10.1016/j.ocemod.2015.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 557 369 15
Full Text Views 124 77 4
PDF Downloads 144 103 6

On the Bimodality of the Wind-Wave Spectrum: Mean Square Slopes and Azimuthal Overlap Integral

Leonel RomeroaUniversity of Connecticut, Groton, Connecticut

Search for other papers by Leonel Romero in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4723-4176
and
Kabir LubanabUniversity of California, Santa Barbara, Santa Barbara, California

Search for other papers by Kabir Lubana in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present an investigation of the azimuthal bimodality of the wind-wave spectrum for waves shorter than the dominant scale comparing numerical model solutions of developing waves from idealized experiments using WAVEWATCH III (WW3). The wave solutions were forced with the “exact” Webb–Resio–Tracy (WRT) nonlinear energy fluxes and the direct interaction approximation (DIA) with three different combinations of wind input and breaking dissipation parameterizations. The WRT gives larger azimuthal bimodal amplitudes compared to the DIA regardless of wind input/dissipation. The widely used wind input/dissipation parameterizations (i.e., ST4 and ST6) generally give narrow directional distributions with relatively small bimodal amplitudes and lobe separations compared to field measurements. These biases are significantly improved by the breaking dissipation of Romero (R2019). Moreover, the ratio of the resolved cross- to downwind mean square slope is significantly lower for ST4 and ST6 compared to R2019. The overlap integral relevant for the prediction of microseisms is several orders of magnitude smaller for ST4 and ST6 compared to R2019, which nearly agrees with a semiempirical model.

Significance Statement

Spectral gravity wave models generally cannot accurately predict the directional distribution which impacts their ability to predict the resolved down- and crosswind mean square slopes and the generation of microseisms. Our analysis shows that a directionally narrow spectral energy dissipation, accounting for long-wave–short-wave modulation, can significantly improve the directional distribution of the wind-wave spectrum by coupling to the nonlinear energy fluxes due to wave–wave interactions, which has important implications for improved predictions of the mean square slopes and the generation of microseisms.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leonel Romero, leonel.romero@uconn.edu

Abstract

We present an investigation of the azimuthal bimodality of the wind-wave spectrum for waves shorter than the dominant scale comparing numerical model solutions of developing waves from idealized experiments using WAVEWATCH III (WW3). The wave solutions were forced with the “exact” Webb–Resio–Tracy (WRT) nonlinear energy fluxes and the direct interaction approximation (DIA) with three different combinations of wind input and breaking dissipation parameterizations. The WRT gives larger azimuthal bimodal amplitudes compared to the DIA regardless of wind input/dissipation. The widely used wind input/dissipation parameterizations (i.e., ST4 and ST6) generally give narrow directional distributions with relatively small bimodal amplitudes and lobe separations compared to field measurements. These biases are significantly improved by the breaking dissipation of Romero (R2019). Moreover, the ratio of the resolved cross- to downwind mean square slope is significantly lower for ST4 and ST6 compared to R2019. The overlap integral relevant for the prediction of microseisms is several orders of magnitude smaller for ST4 and ST6 compared to R2019, which nearly agrees with a semiempirical model.

Significance Statement

Spectral gravity wave models generally cannot accurately predict the directional distribution which impacts their ability to predict the resolved down- and crosswind mean square slopes and the generation of microseisms. Our analysis shows that a directionally narrow spectral energy dissipation, accounting for long-wave–short-wave modulation, can significantly improve the directional distribution of the wind-wave spectrum by coupling to the nonlinear energy fluxes due to wave–wave interactions, which has important implications for improved predictions of the mean square slopes and the generation of microseisms.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leonel Romero, leonel.romero@uconn.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.21 MB)
Save