• Anutaliya, A., and Coauthors, 2017: An undercurrent off the east coast of Sri Lanka. Ocean Sci., 13, 10351044, https://doi.org/10.5194/os-13-1035-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2015: Determining the origins of advective heat transport convergence variability in the North Atlantic. J. Climate, 28, 39433956, https://doi.org/10.1175/JCLI-D-14-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, J. M., B. Subrahmanyam, and V. S. N. Murty, 2017: On the dynamics of the Sri Lanka dome in the Bay of Bengal. J. Geophys. Res. Oceans, 122, 77377750, https://doi.org/10.1002/2017JC012986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullen, K., and E. L. Shroyer, 2019: Seasonality and interannual variability of the Sri Lanka dome. Deep-Sea Res. II, 168, 104642, https://doi.org/10.1016/j.dsr2.2019.104642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, U., P. Vinayachandran, and A. Behara, 2016: Formation of the southern Bay of Bengal cold pool. Climate Dyn., 47, 20092023, https://doi.org/10.1007/s00382-015-2947-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vos, A., C. Pattiaratchi, and E. Wijeratne, 2014: Surface circulation and upwelling patterns around Sri Lanka. Biogeosciences, 11, 59095930, https://doi.org/10.5194/bg-11-5909-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, M. S., P. V. Joseph, K. A. Joseph, L. Bertino, and O. M. Johannessen, 2017: The cold pool of the Bay of Bengal and its association with the break phase of the Indian summer monsoon. Atmos. Ocean. Sci. Lett., 10, 214220, https://doi.org/10.1080/16742834.2017.1294017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girishkumar, M., J. Joseph, V. Thangaprakash, V. Pottapinjara, and M. McPhaden, 2017: Mixed layer temperature budget for the northward propagating summer monsoon intraseasonal oscillation (MISO) in the central Bay of Bengal. J. Geophys. Res. Oceans, 122, 88418854, https://doi.org/10.1002/2017JC013073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Q., H. Zhan, S. Cai, and G. Zha, 2016: On the asymmetry of eddy-induced surface chlorophyll anomalies in the southeastern Pacific: The role of eddy-Ekman pumping. Prog. Oceanogr., 141, 202211, https://doi.org/10.1016/j.pocean.2015.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed 1 June 2019, https://doi.org/10.24381/cds.bd0915c6.

    • Crossref
    • Export Citation
  • Jyothibabu, R., P. Vinayachandran, N. Madhu, R. Robin, C. Karnan, L. Jagadeesan, and A. Anjusha, 2015: Phytoplankton size structure in the southern Bay of Bengal modified by the summer monsoon current and associated eddies: Implications on the vertical biogenic flux. J. Mar. Syst., 143, 98119, https://doi.org/10.1016/j.jmarsys.2014.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keerthi, M. G., M. Lengaigne, K. Drushka, J. Vialard, C. de Boyer Montegut, S. Pous, M. Levy, and P. M. Muraleedharan, 2016: Intraseasonal variability of mixed layer depth in the tropical Indian Ocean. Climate Dyn., 46, 26332655, https://doi.org/10.1007/s00382-015-2721-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, M. Ravichandran, T. Lee, and T. Shinoda, 2017: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J. Geophys. Res. Oceans, 122, 43124328, https://doi.org/10.1002/2017JC012692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I., A. Pirro, E. Jarosz, H. Wijesekera, S. Jinadasa, and H. Fernando, 2019: Turbulence at the periphery of Sri Lanka dome. Deep-Sea Res. II, 168, 104614, https://doi.org/10.1016/j.dsr2.2019.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, V., Y. Sarma, D. Rao, and C. Murty, 1992: Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon. J. Mar. Res., 50, 207228, https://doi.org/10.1357/002224092784797700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, A. K. M., K. Rajeev, S. Sijikumar, and S. Meenu, 2011: Characteristics of a persistent “pool of inhibited cloudiness” and its genesis over the Bay of Bengal associated with the Asian summer monsoon. Ann. Geophys., 29, 12471252, https://doi.org/10.5194/ANGEO-29-1247-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 1969: On the Ekman divergence in an oceanic jet. J. Geophys. Res., 74, 70487052, https://doi.org/10.1029/JC074i028p07048.

  • Park, J. E., K. A. Park, C. K. Kang, and Y. J. Park, 2019: Short-term response of chlorophyll-a concentration to change in sea surface wind field over mesoscale eddy. Estuaries Coasts, 43, 646660, https://doi.org/10.1007/s12237-019-00643-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2008: On the weakly nonlinear Ekman layer: Thickness and flux. J. Phys. Oceanogr., 38, 13341339, https://doi.org/10.1175/2007JPO3830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirro, A., H. Fernando, H. Wijesekera, T. Jensen, L. Centurioni, and S. Jinadasa, 2020: Eddies and currents in the Bay of Bengal during summer monsoons. Deep-Sea Res. II, 172, 104728, https://doi.org/10.1016/j.dsr2.2019.104728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., 2001: Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J. Geophys. Res., 106, 69436955, https://doi.org/10.1029/2000JC000479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., 2003: Mixed layer heat balance in the western North Pacific. J. Geophys. Res., 108, 3242, https://doi.org/10.1029/2002JC001536.

  • Rao, R., M. Girish Kumar, M. Ravichandran, B. Samala, and G. Anitha, 2006a: Observed intraseasonal variability of mini-cold pool off the southern tip of India and its intrusion into the south central Bay of Bengal during summer monsoon season. Geophys. Res. Lett., 33, L15606, https://doi.org/10.1029/2006GL026086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, R., M. Girish Kumar, M. Ravichandran, B. Samala, and N. Sreedevi, 2006b: Observed mini-cold pool off the southern tip of India and its intrusion into the south central Bay of Bengal during summer monsoon season. Geophys. Res. Lett., 33, L06607, https://doi.org/10.1029/2005GL025382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratheesh, S., A. Chaudhary, N. Agarwal, and R. Sharma, 2019: Role of ocean dynamics on mesoscale and sub-mesoscale variability of Ekman pumping for the Bay of Bengal using SCATSAT-1 forced ocean model simulations. Curr. Sci., 117, 993, https://doi.org/10.18520/cs/v117/i6/993-1001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarangi, R., and K. N. Devi, 2017: Space-based observation of chlorophyll, sea surface temperature, nitrate, and sea surface height anomaly over the Bay of Bengal and Arabian Sea. Adv. Space Res., 59, 3344, https://doi.org/10.1016/j.asr.2016.08.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130, https://doi.org/10.1029/2001GL013587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, H. Song, and J. S. Chowdary, 2019: Coupled effects of ocean current on wind stress in the Bay of Bengal: Eddy energetics and upper ocean stratification. Deep-Sea Res. II, 168, 104617, https://doi.org/10.1016/j.dsr2.2019.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankar, D., S. Shetye, and P. Joseph, 2007: Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal. J. Earth Syst. Sci., 116, 385406, https://doi.org/10.1007/s12040-007-0038-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, J., B. Chapron, and E. Autret, 2014: The surface thermal signature and air-sea coupling over the Agulhas rings propagating in the South Atlantic Ocean interior. Ocean Sci., 10, 633644, https://doi.org/10.5194/os-10-633-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1965: Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res. Oceanogr. Abstr., 12, 355367, https://doi.org/10.1016/0011-7471(65)90007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and P. B. Rhines, 2002: Nonlinear stratified spin-up. J. Fluid Mech., 473, 211244, https://doi.org/10.1017/S0022112002002367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vijith, V., P. Vinayachandran, B. G. Webber, A. J. Matthews, J. V. George, V. K. Kannaujia, A. A. Lotliker, and P. Amol, 2020: Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation advection during bobble. Sci. Rep., 10, 7062, https://doi.org/10.1038/s41598-020-63320-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., and T. Yamagata, 1998: Monsoon response of the sea around Sri Lanka: Generation of thermal domes and anticyclonic vortices. J. Phys. Oceanogr., 28, 19461960, https://doi.org/10.1175/1520-0485(1998)028<1946:MROTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., Y. Masumoto, T. Mikawa, and T. Yamagata, 1999: Intrusion of the southwest monsoon current into the Bay of Bengal. J. Geophys. Res., 104, 11 07711 085, https://doi.org/10.1029/1999JC900035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., P. Chauhan, M. Mohan, and S. Nayak, 2004: Biological response of the sea around Sri Lanka to summer monsoon. Geophys. Res. Lett., 31, L01302, https://doi.org/10.1029/2003GL018533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., and Coauthors, 2018: Bobble: Ocean–atmosphere interaction and its impact on the South Asian monsoon. Bull. Amer. Meteor. Soc., 99, 15691587, https://doi.org/10.1175/BAMS-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., U. Das, D. Shankar, S. Jahfer, A. Behara, T. B. Nair, and G. Bhat, 2020: Maintenance of the southern Bay of Bengal cold pool. Deep-Sea Res. II, 179, 104624, https://doi.org/10.1016/j.dsr2.2019.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, B. G., A. J. Matthews, P. Vinayachandran, C. Neema, A. Sanchez-Franks, V. Vijith, P. Amol, and D. B. Baranowski, 2018: The dynamics of the southwest monsoon current in 2016 from high-resolution in situ observations and models. J. Phys. Oceanogr., 48, 22592282, https://doi.org/10.1175/JPO-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and L. N. Thomas, 2017: Ekman transport in balanced currents with curvature. J. Phys. Oceanogr., 47, 11891203, https://doi.org/10.1175/JPO-D-16-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R. G., 1989: The influence of air–sea interaction on the ventilated thermocline. J. Phys. Oceanogr., 19, 12551267, https://doi.org/10.1175/1520-0485(1989)019<1255:TIOAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11, 12051214, https://doi.org/10.1175/1520-0485(1981)011<1205:AEOEUI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., B. Liu, Y. Liu, W. Wang, and Z. He, 2020: Effects of monsoon onset vortex on heat budget in the mixed layer of the Bay of Bengal. J. Oceanol. Limnol., 38, 16161631, https://doi.org/10.1007/s00343-019-9061-5.

    • Search Google Scholar
    • Export Citation
  • Yapa, K. K., 2000: Seasonal variability of sea surface chlorophyll-a of waters around Sri Lanka. J. Earth Syst. Sci., 109, 427432, https://doi.org/10.1007/BF02708330.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 424 423 38
Full Text Views 133 132 6
PDF Downloads 166 164 7

Weakly Nonlinear Ekman Pumping in the Sri Lanka Dome and Southwest Monsoon Current

Kerstin CullenaCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Kerstin Cullen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2300-0797
,
Emily ShroyeraCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Emily Shroyer in
Current site
Google Scholar
PubMed
Close
, and
Larry O’NeillaCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Larry O’Neill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Sri Lanka Dome is a cyclonic recirculation feature in the Southwest Monsoon Current system in the southern Bay of Bengal. Cooler sea surface temperature (SST) in the vicinity of this system is often denoted as the Bay of Bengal “Cold Pool.” Although the wind shadow of Sri Lanka creates a region of strong positive wind stress curl, both sea level height dynamics and the distribution of cool SST cannot be explained by wind stress curl alone via traditional Ekman pumping. Moreover, the Cold Pool region is often aligned with the eastern portion of the Sri Lanka Dome, as defined by sea surface height. Previous work has attributed the spatial SST pattern to lateral advection. In this analysis, we explore whether low-latitude weakly nonlinear “vorticity” Ekman pumping could be an explanation for both cooling and observed changes in sea level height in the southwest Bay of Bengal. We show that weakly nonlinear upwelling, calculated from ERA5 and AVISO geostrophic currents, collocates with changes in sea level height (and presumably isopycnals). While the SST signal is sensitive to several factors including the net surface flux, regional upwelling explains changes in AVISO sea level height if the nonlinear terms are included, in both the Sri Lanka Dome and the region of the Southwest Monsoon Current.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Kerstin Cullen, kerstin.cullen@gmail.com

Abstract

The Sri Lanka Dome is a cyclonic recirculation feature in the Southwest Monsoon Current system in the southern Bay of Bengal. Cooler sea surface temperature (SST) in the vicinity of this system is often denoted as the Bay of Bengal “Cold Pool.” Although the wind shadow of Sri Lanka creates a region of strong positive wind stress curl, both sea level height dynamics and the distribution of cool SST cannot be explained by wind stress curl alone via traditional Ekman pumping. Moreover, the Cold Pool region is often aligned with the eastern portion of the Sri Lanka Dome, as defined by sea surface height. Previous work has attributed the spatial SST pattern to lateral advection. In this analysis, we explore whether low-latitude weakly nonlinear “vorticity” Ekman pumping could be an explanation for both cooling and observed changes in sea level height in the southwest Bay of Bengal. We show that weakly nonlinear upwelling, calculated from ERA5 and AVISO geostrophic currents, collocates with changes in sea level height (and presumably isopycnals). While the SST signal is sensitive to several factors including the net surface flux, regional upwelling explains changes in AVISO sea level height if the nonlinear terms are included, in both the Sri Lanka Dome and the region of the Southwest Monsoon Current.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Kerstin Cullen, kerstin.cullen@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 1.04 MB)
Save