• Abkar, M., and P. Moin, 2017: Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model. Bound.-Layer Meteor., 165, 405419, https://doi.org/10.1007/s10546-017-0288-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzeno, I. B., R. C. Beardsley, R. Limeburner, B. Owens, L. Padman, S. R. Springer, C. L. Stewart, and M. J. Williams, 2014: Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. J. Geophys. Res. Oceans, 119, 42144233, https://doi.org/10.1002/2014JC009792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bathmann, U., V. Smetacek, H. de Baar, E. Fahrbach, and G. Krause, 1994: The expeditions ANTARKTIS X/6-8 of the research vessel “POLARSTERN” in 1992/93. Ber. Polarforsch., 135, 236, https://doi.org/10.2312/BzP_0135_1994.

    • Search Google Scholar
    • Export Citation
  • Begeman, C. B., and Coauthors, 2018: Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone. J. Geophys. Res. Oceans, 123, 74387452, https://doi.org/10.1029/2018JC013987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradshaw, P., and G. P. Huang, 1995: The law of the wall in turbulent flow. Proc. Roy. Soc. London, A451, 165188, https://doi.org/10.1098/rspa.1995.0122.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1972: On the inflection point instability of a stratified Ekman boundary layer. J. Atmos. Sci., 29, 850859, https://doi.org/10.1175/1520-0469(1972)029<0850:OTIPIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darelius, E., I. Fer, and K. W. Nicholls, 2016: Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun., 7, 12300, https://doi.org/10.1038/ncomms12300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, P. E. D., and K. W. Nicholls, 2019: Turbulence observations beneath Larsen C ice shelf, Antarctica. J. Geophys. Res. Oceans, 124, 55295550, https://doi.org/10.1029/2019JC015164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., G. Brethouwer, P. Schlatter, and E. Lindborg, 2014: A numerical study of the unstratified and stratified Ekman layer. J. Fluid Mech., 755, 672704, https://doi.org/10.1017/jfm.2014.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., C. P. Caulfield, and J. R. Taylor, 2015: The intermittency boundary in stratified plane Couette flow. J. Fluid Mech., 781, 298329, https://doi.org/10.1017/jfm.2015.497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., X. S. Asay-Davis, B. K. Galton-Fenzi, P. R. Holland, A. Jenkins, and R. Timmermann, 2016: Modeling ice shelf/ocean interaction in Antarctica: A review. Oceanography, 29, 144153, https://doi.org/10.5670/oceanog.2016.106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faller, A. J., and R. E. Kaylor, 1966: A numerical study of the instability of the laminar Ekman boundary layer. J. Atmos. Sci., 23, 466480, https://doi.org/10.1175/1520-0469(1966)023<0466:ANSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, https://doi.org/10.1007/s10546-006-9048-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fretwell, P., and Coauthors, 2013: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 375393, https://doi.org/10.5194/tc-7-375-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., R. W. Griffiths, and R. C. Kerr, 2016: Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech., 798, 284298, https://doi.org/10.1017/jfm.2016.315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., O. A. Nøst, J. M. Lilly, and L. H. Smedsrud, 2012: Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys. Res. Lett., 39, L12605, https://doi.org/10.1029/2012GL051012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., F. Kauker, R. Timmermann, J. Determann, and J. Rae, 2012: Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485, 225228, https://doi.org/10.1038/nature11064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., T. J. Bracegirdle, P. Dutrieux, A. Jenkins, and E. J. Steig, 2019: West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci., 12, 718724, https://doi.org/10.1038/s41561-019-0420-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1991: A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96, 20 67120 677, https://doi.org/10.1029/91JC01842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, https://doi.org/10.1175/JPO-D-11-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2016: A simple model of the ice shelf–ocean boundary layer and current. J. Phys. Oceanogr., 46, 17851803, https://doi.org/10.1175/JPO-D-15-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2021: Shear, stability, and mixing within the ice shelf–ocean boundary current. J. Phys. Oceanogr., 51, 21292148, https://doi.org/10.1175/JPO-D-20-0096.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., K. W. Nicholls, and H. F. J. Corr, 2010: Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr., 40, 22982312, https://doi.org/10.1175/2010JPO4317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., D. Shoosmith, P. Dutrieux, S. Jacobs, T. W. Kim, S. H. Lee, H. K. Ha, and S. Stammerjohn, 2018: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci., 11, 733738, https://doi.org/10.1038/s41561-018-0207-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, J., 2004: Turbulent flows over rough walls. Annu. Rev. Fluid Mech., 36, 173196, https://doi.org/10.1146/annurev.fluid.36.050802.122103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kader, B., and A. Yaglom, 1972: Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transf., 15, 23292351, https://doi.org/10.1016/0017-9310(72)90131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J., J. Wyngaard, D. Haugen, O. Coté, Y. Izumi, S. Caughey, and C. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keitzl, T., J. P. Mellado, and D. Notz, 2016: Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface. J. Geophys. Res. Oceans, 121, 84198433, https://doi.org/10.1002/2016JC012018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, S., K. W. Nicholls, and E. Venables, 2015: Estimation of ice shelf melt rate in the presence of a thermohaline staircase. J. Phys. Oceanogr., 45, 133148, https://doi.org/10.1175/JPO-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, S., A. Jenkins, P. Dutrieux, A. Forryan, A. C. Naveira Garabato, and Y. Firing, 2016: Ocean mixing beneath Pine Island glacier ice shelf, West Antarctica. J. Geophys. Res. Oceans, 121, 84968510, https://doi.org/10.1002/2016JC012149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the instability of Ekman boundary flow. J. Atmos. Sci., 23, 481494, https://doi.org/10.1175/1520-0469(1966)023<0481:OTIOEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., 2017: Element analysis: A wavelet-based method for analysing time-localized events in noisy time series. Proc. Roy. Soc., A473, 20160776, http://doi.org/10.1098/rspa.2016.0776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malyarenko, A., A. J. Wells, P. J. Langhorne, N. J. Robinson, M. J. Williams, and K. W. Nicholls, 2020: A synthesis of thermodynamic ablation at ice-ocean interfaces from theory, observations and models. Ocean Model., 154, 101692, https://doi.org/10.1016/j.ocemod.2020.101692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S., and P. Kauffman, 1977: An experimental and theoretical study of the turbulent and laminar convection generated under a horizontal ice sheet floating on warm salty water. J. Phys. Oceanogr., 7, 272283, https://doi.org/10.1175/1520-0485(1977)007<0272:AEATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConnochie, C. D., and R. C. Kerr, 2016: The effect of a salinity gradient on the dissolution of a vertical ice face. J. Fluid Mech., 791, 589607, https://doi.org/10.1017/jfm.2016.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConnochie, C. D., and R. C. Kerr, 2018: Dissolution of a sloping solid surface by turbulent compositional convection. J. Fluid Mech., 846, 563577, https://doi.org/10.1017/jfm.2018.282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., G. A. Maykut, and J. H. Morison, 1987: Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res., 92, 70177031, https://doi.org/10.1029/JC092iC07p07017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, L., C. A. Vreugdenhil, P. R. Holland, and J. R. Taylor, 2021: Numerical simulations of melt-driven double-diffusive fluxes in a turbulent boundary layer beneath an ice shelf. J. Phys. Oceanogr., 51, 403418, https://doi.org/10.1175/JPO-D-20-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mkhinini, N., T. Dubos, and P. Drobinski, 2013: Secondary instability of the stably stratified Ekman layer. J. Fluid Mech., 728, 2957, https://doi.org/10.1017/jfm.2013.250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondal, M., B. Gayen, R. W. Griffiths, and R. C. Kerr, 2019: Ablation of sloping ice faces into polar seawater. J. Fluid Mech., 863, 545571, https://doi.org/10.1017/jfm.2018.970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., C. Pudsey, and P. Morris, 2004: Summertime water masses off the northern Larsen C Ice Shelf, Antarctica. Geophys. Res. Lett., 31, L09309, https://doi.org/10.1029/2004GL019924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., K. Makinson, and E. Venables, 2012: Ocean circulation beneath Larsen C Ice Shelf, Antarctica from in situ observations. Geophys. Res. Lett., 39, L19608, https://doi.org/10.1029/2012GL053187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1971: Numerical simulation of incompressible flows within simple boundaries. 1. Galerkin (spectral) representation. Stud. Appl. Math., 50, 293327, https://doi.org/10.1002/sapm1971504293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331, https://doi.org/10.1126/science.aaa0940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piomelli, U., J. Ferziger, P. Moin, and J. Kim, 1989: New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids A, 1, 10611068, https://doi.org/10.1063/1.857397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Pritchard, H., S. R. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, https://doi.org/10.1038/nature10968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosevear, M. G., B. Gayen, and B. K. Galton-Fenzi, 2021: The role of double-diffusive convection in basal melting of Antarctic ice shelves. Proc. Natl. Acad. Sci. USA, 118, e2007541118, https://doi.org/10.1073/pnas.2007541118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozema, W., H. J. Bae, P. Moin, and R. Verstappen, 2015: Minimum-dissipation models for large-eddy simulation. Phys. Fluids, 27, 085107, https://doi.org/10.1063/1.4928700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichting, H., and K. Gersten, 2003: Boundary-Layer Theory. Springer, 800 pp.

  • Schoof, C., 2007: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res., 112, F03S28, https://doi.org/10.1029/2006JF000664.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., D. Wingham, and E. Rignot, 2004: Warm ocean is eroding West Antarctic ice sheet. Geophys. Res. Lett., 31, L23402, https://doi.org/10.1029/2004GL021106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanton, T. P., and Coauthors, 2013: Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier. Science, 341, 12361239, https://doi.org/10.1126/science.1239373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. thesis, University of California, San Diego, 230 pp., https://escholarship.org/uc/item/5s30n2ts.

    • Search Google Scholar
    • Export Citation
  • Verstappen, R., 2016: How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence? Comput. Fluids, 176, 276284, https://doi.org/10.1016/j.compfluid.2016.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreugdenhil, C. A., and J. R. Taylor, 2018: Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model. Phys. Fluids, 30, 085104, https://doi.org/10.1063/1.5037039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreugdenhil, C. A., and J. R. Taylor, 2019: Stratification effects in the turbulent boundary layer beneath a melting ice shelf: Insights from resolved large-eddy simulations. J. Phys. Oceanogr., 49, 19051925, https://doi.org/10.1175/JPO-D-18-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Zhou, Q., J. R. Taylor, and C. P. Caulfield, 2017: Self-similar mixing in stratified plane Couette flow for varying Prandtl number. J. Fluid Mech., 820, 86120, https://doi.org/10.1017/jfm.2017.200.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 344 341 52
Full Text Views 165 163 14
PDF Downloads 204 202 22

The Ocean Boundary Layer beneath Larsen C Ice Shelf: Insights from Large-Eddy Simulations with a Near-Wall Model

Catherine A. VreugdenhilaUniversity of Cambridge, Cambridge, United Kingdom
bUniversity of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Catherine A. Vreugdenhil in
Current site
Google Scholar
PubMed
Close
,
John R. TayloraUniversity of Cambridge, Cambridge, United Kingdom

Search for other papers by John R. Taylor in
Current site
Google Scholar
PubMed
Close
,
Peter E. D. DaviscBritish Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Peter E. D. Davis in
Current site
Google Scholar
PubMed
Close
,
Keith W. NichollscBritish Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Keith W. Nicholls in
Current site
Google Scholar
PubMed
Close
,
Paul R. HollandcBritish Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Paul R. Holland in
Current site
Google Scholar
PubMed
Close
, and
Adrian JenkinsdNorthumbria University, Newcastle upon Tyne, United Kingdom

Search for other papers by Adrian Jenkins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The melt rate of Antarctic ice shelves is of key importance for rising sea levels and future climate scenarios. Recent observations beneath Larsen C Ice Shelf revealed an ocean boundary layer that was highly turbulent and raised questions on the effect of these rich flow dynamics on the ocean heat transfer and the ice shelf melt rate. Directly motivated by the field observations, we have conducted large-eddy simulations (LES) to further examine the ocean boundary layer beneath Larsen C Ice Shelf. The LES was initialized with uniform temperature and salinity (T–S) and included a realistic tidal cycle and a small basal slope. A new parameterization based on previous work was applied at the top boundary to model near-wall turbulence and basal melting. The resulting vertical T–S profiles, melt rate, and friction velocity matched well with the Larsen C Ice Shelf observations. The instantaneous melt rate varied strongly with the tidal cycle, with faster flow increasing the turbulence and mixing of heat toward the ice base. An Ekman layer formed beneath the ice base and, due to the strong vertical shear of the current, Ekman rolls appeared in the mixed layer and stratified region (depth ≈ 20–60 m). In an additional high-resolution simulation (conducted with a smaller domain) the Ekman rolls were associated with increased turbulent kinetic energy, but a relatively small vertical heat flux. Our results will help with interpreting field observations and parameterizing the ocean-driven basal melting of ice shelves.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine A. Vreugdenhil, cat.vreugdenhil@unimelb.edu.au

Abstract

The melt rate of Antarctic ice shelves is of key importance for rising sea levels and future climate scenarios. Recent observations beneath Larsen C Ice Shelf revealed an ocean boundary layer that was highly turbulent and raised questions on the effect of these rich flow dynamics on the ocean heat transfer and the ice shelf melt rate. Directly motivated by the field observations, we have conducted large-eddy simulations (LES) to further examine the ocean boundary layer beneath Larsen C Ice Shelf. The LES was initialized with uniform temperature and salinity (T–S) and included a realistic tidal cycle and a small basal slope. A new parameterization based on previous work was applied at the top boundary to model near-wall turbulence and basal melting. The resulting vertical T–S profiles, melt rate, and friction velocity matched well with the Larsen C Ice Shelf observations. The instantaneous melt rate varied strongly with the tidal cycle, with faster flow increasing the turbulence and mixing of heat toward the ice base. An Ekman layer formed beneath the ice base and, due to the strong vertical shear of the current, Ekman rolls appeared in the mixed layer and stratified region (depth ≈ 20–60 m). In an additional high-resolution simulation (conducted with a smaller domain) the Ekman rolls were associated with increased turbulent kinetic energy, but a relatively small vertical heat flux. Our results will help with interpreting field observations and parameterizing the ocean-driven basal melting of ice shelves.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine A. Vreugdenhil, cat.vreugdenhil@unimelb.edu.au
Save