• Allen, J. S., 1980: Models of wind-driven currents on the continental shelf. Annu. Rev. Fluid Mech., 12, 389433, https://doi.org/10.1146/annurev.fl.12.010180.002133.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Brink, K. H., 1989: Energy conservation in coastal-trapped wave calculations. J. Phys. Oceanogr., 19, 10111016, https://doi.org/10.1175/1520-0485(1989)019<1011:ECICTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1991: Coastal-trapped waves and wind-driven currents over the continental shelf. Annu. Rev. Fluid Mech., 23, 389412, https://doi.org/10.1146/annurev.fl.23.010191.002133.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2006: Coastal-trapped waves with finite bottom friction. Dyn. Atmos. Oceans, 41, 172190, https://doi.org/10.1016/j.dynatmoce.2006.05.001.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and J. S. Allen, 1978: On the effect of bottom friction on barotropic motion over the continental shelf. J. Phys. Oceanogr., 8, 919922, https://doi.org/10.1175/1520-0485(1978)008<0919:OTEOBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carrere, L., and Coauthors, 2021: Accuracy assessment of global internal tide models using satellite altimetry. Ocean Sci., 17, 147180, https://doi.org/10.5194/os-17-147-2021.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1983: On the influence of stratification and continental shelf and slope topography on the dispersion of subinertial coastally trapped waves. J. Phys. Oceanogr., 13, 16411652, https://doi.org/10.1175/1520-0485(1983)013<1641:OTIOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crawford, W. R., 1984: Energy flux and generation of diurnal shelf waves along Vancouver Island. J. Phys. Oceanogr., 14, 16001607, https://doi.org/10.1175/1520-0485(1984)014<1600:EFAGOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics. 2nd ed. Academic Press, 875 pp.

  • Dale, A., J. Huthnance, and T. Sherwin, 2001: Coastal-trapped waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970, https://doi.org/10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., 1997: Tidal data inversion: Interpolation and inference. Prog. Oceanogr., 40,5380, https://doi.org/10.1016/S0079-6611(97)00023-2.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., and J. Nycander, 2015: On the generation of bottom-trapped internal tides. J. Phys. Oceanogr., 45, 526545, https://doi.org/10.1175/JPO-D-14-0081.1.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1975: On trapped waves over a continental shelf. J. Fluid Mech., 69, 689704, https://doi.org/10.1017/S0022112075001632.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1978: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, https://doi.org/10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. R., and J. T. Rodney, 2011: Spectral methods for coastal-trapped waves. Cont. Shelf Res., 31, 14811489, https://doi.org/10.1016/j.csr.2011.06.009.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2019: Coastally generated near-inertial waves. J. Phys. Oceanogr., 49, 29792995, https://doi.org/10.1175/JPO-D-18-0148.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, K. I. Martini, M. H. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232, https://doi.org/10.1175/JPO-D-11-0231.1.

    • Search Google Scholar
    • Export Citation
  • Lahaye, N., and S. G. Llewellyn Smith, 2020: Modal analysis of internal wave propagation and scattering over large-amplitude topography. J. Phys. Oceanogr., 50, 305321, https://doi.org/10.1175/JPO-D-19-0005.1.

    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 602 pp.

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Middleton, J. F., and D. G. Wright, 1988: Shelf wave scattering due to longshore jump in topography. J. Phys. Oceanogr., 18, 230242, https://doi.org/10.1175/1520-0485(1988)018<0230:SWSDTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., 2019: Energy fluxes in coastal trapped waves. J. Phys. Oceanogr., 49, 30613068, https://doi.org/10.1175/JPO-D-18-0172.1.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., 2022: The lifecycle of topographically-generated internal waves. Ocean Mixing: Drivers, Mechanisms and Impacts, M. Meredith and A. Naviera Garabato, Eds., Elsevier, 117–144, https://doi.org/10.1016/B978-0-12-821512-8.00013-X.

  • Mysak, L. A., 1980: Topographically trapped waves. Annu. Rev. Fluid Mech., 12, 4576, https://doi.org/10.1146/annurev.fl.12.010180.000401.

    • Search Google Scholar
    • Export Citation
  • Narayanan, S., and I. Webster, 1987: Coastally trapped waves in the presence of a barotropic shelf edge jet. J. Geophys. Res., 92, 94949502, https://doi.org/10.1029/JC092iC09p09494.

    • Search Google Scholar
    • Export Citation
  • Osborne, J. J., A. L. Kurapov, G. D. Egbert, and P. M. Kosro, 2011: Spatial and temporal variability of the M2 internal tide generation and propagation on the Oregon shelf. J. Phys. Oceanogr., 41, 20372062, https://doi.org/10.1175/JPO-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Osborne, J. J., A. L. Kurapov, G. D. Egbert, and P. M. Kosro, 2014: Intensified diurnal tides along the Oregon coast. J. Phys. Oceanogr., 44, 16891703, https://doi.org/10.1175/JPO-D-13-0247.1.

    • Search Google Scholar
    • Export Citation
  • Parlett, B. N., 1980: Classics in Applied Mathematics: The Symmetric Eigenvalue Problem. SIAM, 391 pp.

  • Power, S. B., J. H. Middleton, and R. H. J. Grimshaw, 1989: Frictionally modified continental shelf waves and the subinertial response to wind and deep-sea forcing. J. Phys. Oceanogr., 19, 14861506, https://doi.org/10.1175/1520-0485(1989)019<1486:FMCSWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 1964: Continental shelf waves and the response of sea level to weather systems. J. Geophys. Res., 69, 367368, https://doi.org/10.1029/JZ069i002p00367.

    • Search Google Scholar
    • Export Citation
  • Rodney, J. T., and E. R. Johnson, 2014: Meanders and eddies from topographic transformation of coastal-trapped waves. J. Phys. Oceanogr., 44, 11331150, https://doi.org/10.1175/JPO-D-12-0224.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1846: Report on recent researches on hydrodynamics. British Association Rep. 1, 120.

  • Thomson, W., 1879: On gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburgh, 10, 92100, https://doi.org/10.1017/S0370164600043467.

    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., and C. N. Mooers, 1976: Coastal-trapped waves in a continuously stratified ocean. J. Phys. Oceanogr., 6, 853863, https://doi.org/10.1175/1520-0485(1976)006<0853:CTWIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, I., 1985: Frictional continental shelf waves and the circulation response of a continental shelf to wind forcing. J. Phys. Oceanogr., 15, 855864, https://doi.org/10.1175/1520-0485(1985)015<0855:FCSWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, I., 1987: Scattering of coastally trapped waves by changes in continental shelf width. J. Phys. Oceanogr., 17, 928937, https://doi.org/10.1175/1520-0485(1987)017<0928:SOCTWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, I., and D. Holland, 1987: A numerical method for solving the forced baroclinic coastal-trapped wave problem of general form. J. Atmos. Oceanic Technol., 4, 220226, https://doi.org/10.1175/1520-0426(1987)004<0220:ANMFST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and D. C. Chapman, 1987: Scattering of continental shelf waves at a discontinuity in shelf width. J. Phys. Oceanogr., 17, 713724, https://doi.org/10.1175/1520-0485(1987)017<0713:SOCSWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and D. C. Chapman, 1990: Scattering of coastal-trapped waves by irregularities in coastline and topography. J. Phys. Oceanogr., 20, 396421, https://doi.org/10.1175/1520-0485(1990)020<0396:SOCTWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and D. C. Chapman, 1995: Generation of mesoscale flows over the shelf and slope by shelf wave scattering in the presence of stable, sheared mean current. J. Geophys. Res., 100, 67256742, https://doi.org/10.1029/94JC03339.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and D. C. Chapman, 1996: Scattering of shelf waves by a spatially varying mean current. J. Geophys. Res., 101, 34793487, https://doi.org/10.1029/95JC02991.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 364 360 35
Full Text Views 165 160 8
PDF Downloads 215 210 12

Coastal Trapped Waves: Normal Modes, Evolution Equations, and Topographic Generation

Samuel M. KellyaLarge Lakes Observatory and Physics and Astronomy Department, University of Minnesota Duluth, Duluth, Minnesota

Search for other papers by Samuel M. Kelly in
Current site
Google Scholar
PubMed
Close
and
Sebastine OgbukaaLarge Lakes Observatory and Physics and Astronomy Department, University of Minnesota Duluth, Duluth, Minnesota

Search for other papers by Sebastine Ogbuka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Coastal trapped waves (CTWs) transport energy along coastlines and drive coastal currents and upwelling. CTW modes are nonorthogonal when frequency is treated as the eigenvalue, preventing the separation of modal energy fluxes and quantification of longshore topographic scattering. Here, CTW modes are shown to be orthogonal with respect to energy flux (but not energy) when the longshore wavenumber is the eigenvalue. The modal evolution equation is a simple harmonic oscillator forced by longshore bathymetric variability, where downstream distance is treated like time. The energy equation includes an expression for modal topographic scattering. The eigenvalue problem is carefully discretized to produce numerically orthogonal modes, allowing CTW amplitudes, energy fluxes, and generation to be precisely quantified in numerical simulations. First, a spatially uniform K1 longshore velocity is applied to a continental slope with a Gaussian bump in the coastline. Mode-1 CTW generation increases quadratically with the amplitude of the bump and is maximum when the bump’s length of coastline matches the natural wavelength of the CTW mode, as predicted by theory. Next, a realistic K1 barotropic tide is applied to the Oregon coast. The forcing generates mode-1 and mode-2 CTWs with energy fluxes of 6 and 2 MW, respectively, which are much smaller than the 80 MW of M2 internal-tide generation in this region. CTWs also produce 1-cm sea surface displacements along the coast, potentially complicating the interpretation of future satellite altimetry. Prospects and challenges for quantifying the global geography of CTWs are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel M. Kelly, smkelly@d.umn.edu

Abstract

Coastal trapped waves (CTWs) transport energy along coastlines and drive coastal currents and upwelling. CTW modes are nonorthogonal when frequency is treated as the eigenvalue, preventing the separation of modal energy fluxes and quantification of longshore topographic scattering. Here, CTW modes are shown to be orthogonal with respect to energy flux (but not energy) when the longshore wavenumber is the eigenvalue. The modal evolution equation is a simple harmonic oscillator forced by longshore bathymetric variability, where downstream distance is treated like time. The energy equation includes an expression for modal topographic scattering. The eigenvalue problem is carefully discretized to produce numerically orthogonal modes, allowing CTW amplitudes, energy fluxes, and generation to be precisely quantified in numerical simulations. First, a spatially uniform K1 longshore velocity is applied to a continental slope with a Gaussian bump in the coastline. Mode-1 CTW generation increases quadratically with the amplitude of the bump and is maximum when the bump’s length of coastline matches the natural wavelength of the CTW mode, as predicted by theory. Next, a realistic K1 barotropic tide is applied to the Oregon coast. The forcing generates mode-1 and mode-2 CTWs with energy fluxes of 6 and 2 MW, respectively, which are much smaller than the 80 MW of M2 internal-tide generation in this region. CTWs also produce 1-cm sea surface displacements along the coast, potentially complicating the interpretation of future satellite altimetry. Prospects and challenges for quantifying the global geography of CTWs are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel M. Kelly, smkelly@d.umn.edu
Save