• Abernathey, R., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, https://doi.org/10.1002/jgrc.20066.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, https://doi.org/10.1016/j.ocemod.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., D. P. Marshall, J. R. Maddison, and J. Mak, 2017: Evaluation of a scalar eddy transport coefficient based on geometric constraints. Ocean Modell., 109, 4454, https://doi.org/10.1016/j.ocemod.2016.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, and F. O. Bryan, 2020: A diagnosis of anisotropic eddy diffusion from a high-resolution global ocean model. J. Adv. Model. Earth. Syst., 12, e2019MS001904, https://doi.org/10.1029/2019MS001904.

    • Crossref
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 55–88, https://www.sciencedirect.com/science/article/abs/pii/S1463500301000129; Corrigendum, 4, 219, https://doi.org/10.1016/S1463-5003(01)00017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., C. Rooth, D. M. Hu, and L. T. Smith, 1992: Salinity-driven thermocline transients in a wind-forced and thermohaline-forced isopycnic coordinate model of the north-Atlantic. J. Phys. Oceanogr., 22, 14861505, https://doi.org/10.1175/1520-0485(1992)022<1486:SDTTIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J., and I. Kamenkovich, 2008: Isolating the role of mesoscale eddies in mixing of a passive tracer in an eddy resolving model. J. Geophys. Res. Oceans, 113, C05021, https://doi.org/10.1029/2007JC004510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science, 278, 15821588, https://doi.org/10.1126/science.278.5343.1582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general-circulation models. J. Phys. Oceanogr., 17, 970985, https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., and M. Fantini, 2004: The eddy-driven thermocline. J. Phys. Oceanogr., 34, 26422658, https://doi.org/10.1175/JPO2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33, 25042526, https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doney, S. C., and Coauthors, 2004: Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochem. Cycles, 18, GB3017, https://doi.org/10.1029/2003GB002150.

    • Crossref
    • Export Citation
  • Dutay, J. C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models. Ocean Modell., 4, 89120, https://doi.org/10.1016/S1463-5003(01)00013-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: On the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483, https://doi.org/10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., I. Kamenkovich, N. Perlin, and B. Kirtman, 2022: Oceanic advection controls mesoscale mixed layer heat budget and air-sea heat exchange in the Southern Ocean. J. Phys. Oceanogr., 52, 537555, https://doi.org/10.1175/JPO-D-21-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., J. P. Dunne, R. M. Key, K. Matsumoto, J. L. Sarmiento, R. D. Slater, and P. S. Swathi, 2004: Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity. Global Biogeochem. Cycles, 18, GB4010, https://doi.org/10.1029/2003GB002097.

    • Crossref
    • Export Citation
  • Gnanadesikan, A., D. Bianchi, and M. A. Pradal, 2013: Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters. Geophys. Res. Lett., 40, 51945198, https://doi.org/10.1002/grl.50998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M. A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, https://doi.org/10.1002/2015GL064100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., R. Marsh, and S. A. Josey, 2009: On the relationship between the north Atlantic meridional overturning circulation and the surface-forced overturning streamfunction. J. Climate, 22, 49895002, https://doi.org/10.1175/2009JCLI2574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, M., and P. Berloff, 2021: On co-existing diffusive and anti-diffusive tracer transport by oceanic mesoscale eddies. Ocean Modell., 168, 101909, https://doi.org/10.1016/j.ocemod.2021.101909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, M., L. Sun, I. Shevchenko, and P. Berloff, 2020: Tracer-based estimates of eddy-induced diffusivities. Deep-Sea Res. I, 160, 103264, https://doi.org/10.1016/j.dsr.2020.103264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, M., L. L. Sun, J. C. McWilliams, and P. Berloff, 2021a: On eddy transport in the ocean. Part I: The diffusion tensor. Ocean Modell., 164, 101831, https://doi.org/10.1016/j.ocemod.2021.101831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, M., L. L. Sun, J. C. McWilliams, and P. Berloff, 2021b: On eddy transport in the ocean. Part II: The advection tensor. Ocean Modell., 165, 101845, https://doi.org/10.1016/j.ocemod.2021.101845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and T. M. Hall, 2002: A generalized transport theory: Water-mass composition and age. J. Phys. Oceanogr., 32, 19321946, https://doi.org/10.1175/1520-0485(2002)032<1932:AGTTWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, https://doi.org/10.1016/j.ocemod.2003.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, M., I. Kamenkovich, T. Radko, and W. E. Johns, 2013: Relationship between air–sea density flux and isopycnal meridional overturning circulation in a warming climate. J. Climate, 26, 26832699, https://doi.org/10.1175/JCLI-D-11-00682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. K. Vallis, 2004: The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34, 24282443, https://doi.org/10.1175/JPO2639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer, M., and T. M. Hall, 2000: Transit-time and tracer-age distributions in geophysical flows. J. Atmos. Sci., 57, 35393558, https://doi.org/10.1175/1520-0469(2000)057<3539:TTATAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., P. H. Stone, A. P. Sokolov, and I. V. Kamenkovich, 2003: Ocean heat uptake in transient climate change: Mechanisms and uncertainty due to subgrid-scale eddy mixing. J. Climate, 16, 33443356, https://doi.org/10.1175/1520-0442(2003)016<3344:OHUITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, https://doi.org/10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., and T. Radko, 2011: Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation. J. Mar. Res., 69, 277308, https://doi.org/10.1357/002224011798765286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Anisotropic material transport by eddies and eddy-driven currents in a model of the north Atlantic. J. Phys. Oceanogr., 39, 31623175, https://doi.org/10.1175/2009JPO4239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., I. I. Rypina, and P. Berloff, 2015: Properties and origins of the anisotropic eddy-induced transport in the north Atlantic. J. Phys. Oceanogr., 45, 778791, https://doi.org/10.1175/JPO-D-14-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., Z. Garraffo, R. Pennel, and R. A. Fine, 2017: Importance of mesoscale eddies and mean circulation in ventilation of the Southern Ocean. J. Geophys. Res. Oceans, 122, 27242741, https://doi.org/10.1002/2016JC012292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, M. Haigh, L. L. Sun, and Y. Y. Lu, 2021: Complexity of mesoscale eddy diffusivity in the ocean. Geophys. Res. Lett., 48, e2020GL091719, https://doi.org/10.1029/2020GL091719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., M. Visbeck, and P. Schlosser, 2001: Age tracers in an ocean GCM. Deep-Sea Res. I, 48, 14231441, https://doi.org/10.1016/S0967-0637(00)00094-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346–349, https://doi.org/10.1038/nature08526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, Y., K. C. Armour, and J. Marshall, 2014: Impact of the Atlanticmeridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett., 41, 21082116, https://doi.org/10.1002/2013GL058998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, https://doi.org/10.1029/2012GL052952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. Mcwilliams, and S. C. Doney, 1994: Oceanic vertical mixing – A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and J. M. Wallace, 1979: Distribution of horizontal transports by transient eddies in the northern hemisphere wintertime circulation. J. Atmos. Sci., 36, 18441861, https://doi.org/10.1175/1520-0469(1979)036<1844:OTDOHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z. J., Y. Chao, and J. C. McWilliams, 2006: Computation of the streamfunction and velocity potential for limited and irregular domains. Mon. Wea. Rev., 134, 33843394, https://doi.org/10.1175/MWR3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Maddison, J. R., D. P. Marshall, and J. Shipton, 2015: On the dynamical influence of ocean eddy potential vorticity fluxes. Ocean Modell., 92, 169182, https://doi.org/10.1016/j.ocemod.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltrud, M., F. Bryan, and S. Peacock, 2010: Boundary impulse response functions in a century-long eddying global ocean simulation. Environ. Fluid Mech., 10, 275295, https://doi.org/10.1007/s10652-009-9154-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, https://doi.org/10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J. M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, https://doi.org/10.1029/2008GL033267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peacock, S., and M. Maltrud, 2006: Transit-time distributions in a global ocean model. J. Phys. Oceanogr., 36, 474495, https://doi.org/10.1175/JPO2860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2004: The leaky thermocline. J. Phys. Oceanogr., 34, 16481662, https://doi.org/10.1175/1520-0485(2004)034<1648:TLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., I. Kamenkovich, and P. Y. Dare, 2008: Inferring the pattern of the oceanic meridional transport from the air–sea density flux. J. Phys. Oceanogr., 38, 27222738, https://doi.org/10.1175/2008JPO3748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and D. P. Marshall, 2000: On the validity of downgradient eddy closures in ocean models. J. Geophys. Res., 105, 28 61328 627, https://doi.org/10.1029/1999JC000041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., I. Kamenkovich, P. Berloff, and L. J. Pratt, 2012: Eddy-induced particle dispersion in the near-surface north Atlantic. J. Phys. Oceanogr., 42, 22062228, https://doi.org/10.1175/JPO-D-11-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 2004: Simple mechanistic models of middepth meridional overturning. J. Phys. Oceanogr., 34, 20962103, https://doi.org/10.1175/1520-0485(2004)034<2096:SMMOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2004: Evaluation of interior circulation in a high-resolution global ocean model. Part I: Deep and bottom waters. J. Phys. Oceanogr., 34, 25922614, https://doi.org/10.1175/JPO2651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevellec, F., and A. V. Fedorov, 2011: Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: Effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep-Sea Res. II, 58, 19271943, https://doi.org/10.1016/j.dsr2.2010.10.070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shevchenko, I. V., and P. S. Berloff, 2015: Multi-layer quasi-geostrophic ocean dynamics in eddy-resolving regimes. Ocean Modell., 94, 114, https://doi.org/10.1016/j.ocemod.2015.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and Coauthors, 2014: Observed decline of the Atlantic meridional overturning circulation 2004-2012. Ocean Sci., 10, 2938, https://doi.org/10.5194/os-10-29-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L. L., M. Haigh, I. Shevchenko, P. Berloff, and I. Kamenkovich, 2021: On non-uniqueness of the mesoscale eddy diffusivity. J. Fluid Mech., 920, A32, https://doi.org/10.1017/jfm.2021.472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., and R. Bleck, 2001: Thermohaline circulation studies with an Isopycnic Coordinate Ocean Model. J. Phys. Oceanogr., 31, 27612782, https://doi.org/10.1175/1520-0485(2001)031<2761:TCSWAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., R. Bleck, C. Rooth, J. Dukowicz, E. Chassignet, and P. Killworth, 1999: Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr., 29, 27192729, https://doi.org/10.1175/1520-0485(1999)029<2719:IOTIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 18321852, https://doi.org/10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, https://doi.org/10.1126/science.264.5162.1120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., and M. F. Cronin, 2014: Role of mixed layer depth in surface frontogenesis: The Agulhas Return Current front. Geophys. Res. Lett., 41, 24472453, https://doi.org/10.1002/2014GL059624.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., N. G. Hogg, and S. R. Jayne, 2011: Eddy–mean flow interaction in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208, https://doi.org/10.1175/2010JPO4564.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and T. M. Hall, 2005: Propagation of tracer signals in boundary currents. J. Phys. Oceanogr., 35, 15381552, https://doi.org/10.1175/JPO2779.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, https://doi.org/10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., and G. Danabasoglu, 2014: The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Climate, 27, 32223247, https://doi.org/10.1175/JCLI-D-13-00125.1.

    • Search Google Scholar
    • Export Citation
  • Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362, https://doi.org/10.1016/0021-9991(79)90051-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 359 355 16
Full Text Views 181 179 5
PDF Downloads 206 198 5

Importance of Mesoscale Currents in AMOC Pathways and Timescales

Igor KamenkovichaRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Igor Kamenkovich in
Current site
Google Scholar
PubMed
Close
and
Zulema GarraffobIMSG at NOAA/EMC, College Park, Maryland

Search for other papers by Zulema Garraffo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atlantic meridional overturning circulation (AMOC) plays a key role in climate due to uptake and redistribution of heat and carbon anomalies. This redistribution takes place along several main pathways that link the high-latitude North Atlantic with midlatitudes and the Southern Ocean and involves currents on a wide range of spatial scales. This numerical study examines the importance of mesoscale currents (“eddies”) in these AMOC pathways and associated time scales, using a highly efficient offline tracer model. The study uses two boundary impulse response (BIR) tracers, which can quantify the importance of the Atlantic tracer exchanges with the high-latitude atmosphere in the north and with the Southern Ocean in the south. The results demonstrate that mesoscale advection leads to an increase in the overall BIR inventory during the first 100 years and results in a more efficient and spatially uniform ventilation of the deep Atlantic. Mesoscale currents also facilitate meridional spreading of the BIR tracer and thus assist the large-scale advection. The results point toward the importance of spatial inhomogeneity and anisotropy of the eddy-induced mixing in several mixing “hotspots,” as revealed by an eddy diffusivity tensor. Conclusions can be expected to assist evaluations of eddy-permitting simulations that stop short of full resolution of mesoscale, as well as development of eddy parameterization schemes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Igor Kamenkovich, ikamenkovich@miami.edu

Abstract

The Atlantic meridional overturning circulation (AMOC) plays a key role in climate due to uptake and redistribution of heat and carbon anomalies. This redistribution takes place along several main pathways that link the high-latitude North Atlantic with midlatitudes and the Southern Ocean and involves currents on a wide range of spatial scales. This numerical study examines the importance of mesoscale currents (“eddies”) in these AMOC pathways and associated time scales, using a highly efficient offline tracer model. The study uses two boundary impulse response (BIR) tracers, which can quantify the importance of the Atlantic tracer exchanges with the high-latitude atmosphere in the north and with the Southern Ocean in the south. The results demonstrate that mesoscale advection leads to an increase in the overall BIR inventory during the first 100 years and results in a more efficient and spatially uniform ventilation of the deep Atlantic. Mesoscale currents also facilitate meridional spreading of the BIR tracer and thus assist the large-scale advection. The results point toward the importance of spatial inhomogeneity and anisotropy of the eddy-induced mixing in several mixing “hotspots,” as revealed by an eddy diffusivity tensor. Conclusions can be expected to assist evaluations of eddy-permitting simulations that stop short of full resolution of mesoscale, as well as development of eddy parameterization schemes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Igor Kamenkovich, ikamenkovich@miami.edu
Save