• Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, https://doi.org/10.1002/jgrc.20066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R. P., and G. Haller, 2018: Transport by lagrangian vortices in the eastern Pacific. J. Phys. Oceanogr., 48, 667685, https://doi.org/10.1175/JPO-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aguedjou, H. M. A., I. Dadou, A. Chaigneau, Y. Morel, and G. Alory, 2019: Eddies in the tropical Atlantic Ocean and their seasonal variability. Geophys. Res. Lett., 46, 12 15612 164, https://doi.org/10.1029/2019GL083925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benilov, E. S., 1996: Beta-induced translation of strong isolated eddies. J. Phys. Oceanogr., 26, 22232229, https://doi.org/10.1175/1520-0485(1996)026<2223:BITOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., Y. Wang, M. J. Olascoaga, G. J. Goni, and G. Haller, 2013: Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr., 43, 14261438, https://doi.org/10.1175/JPO-D-12-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brach, L., P. Deixonne, M. F. Bernard, E. Durand, M.-C. Desjean, E. Perez, E. van Sebille, and A. ter Halle, 2018: Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre. Mar. Pollut. Bull., 126, 191196, https://doi.org/10.1016/j.marpolbul.2017.10.077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. M., L. T. Gulliver, and T. Radko, 2019: Effects of topography and orientation on the nonlinear equilibration of baroclinic instability. J. Geophys. Res. Oceans, 124, 67206734, https://doi.org/10.1029/2019JC015297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, D. A., A. L. Gordon, and W. F. Haxby, 1995: Agulhas eddies: A synoptic view using Geosat ERM data. J. Phys. Oceanogr., 25, 902917, https://doi.org/10.1175/1520-0485(1995)025<0902:AEASVU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., M. Le Texier, G. Eldin, C. Grados, and O. Pizarro, 2011: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res., 116, C11025, https://doi.org/10.1029/2011JC007134.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1948: On the scale of atmospheric motions. Geofys. Publ., 17, 251265, https://doi.org/10.1007/978-1-944970-35-2_14.

  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., D. B. Olson, and D. B. Boudra, 1990: Motion and evolution of oceanic rings in a numerical model and in observations. J. Geophys. Res., 95, 22 12122 140, https://doi.org/10.1029/JC095iC12p22121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and G. Han, 2019: Contrasting short‐lived with long‐lived mesoscale eddies in the global ocean. J. Geophys. Res. Oceans, 124, 31493167, https://doi.org/10.1029/2019JC014983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornillon, P., R. Weyer, and G. Flierl, 1989: Translational velocity of warm core rings relative to the slope water. J. Phys. Oceanogr., 19, 13171332, https://doi.org/10.1175/1520-0485(1989)019<1317:TVOWCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., T. Benyang, and E. P. Chassignet, 1990: Westward motion of mesoscale eddies. J. Phys. Oceanogr., 20, 758768, https://doi.org/10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1998: Topography and barotropic transport control by bottom friction. J. Mar. Res., 56, 295328, https://doi.org/10.1357/002224098321822320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dilmahamod, A. F., B. Aguiar‐González, P. Penven, C. J. C. Reason, W. P. M. De Ruijter, N. Malan, and J. C. Hermes, 2018: Siddies corridor: A major east‐west pathway of long‐lived surface and subsurface eddies crossing the subtropical south Indian Ocean. J. Geophys. Res. Oceans, 123, 54065425, https://doi.org/10.1029/2018JC013828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 15351555, https://doi.org/10.1175/2011JPO4601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., D. Chelton, P.-Y. Le Traon, and R. Morrow, 2010: Eddy dynamics from satellite altimetry. Oceanography, 23, 1425, https://doi.org/10.5670/oceanog.2010.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulliver, L. T., and T. Radko, 2022: Topographic stabilization of ocean rings. Geophys. Res. Lett., 49, https://doi.org/10.1029/2021GL097686.

  • Isern-Fontanet, J., E. García-Ladona, and J. Font, 2003: Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol., 20, 772778, https://doi.org/10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., J. Font, E. García-Ladona, M. Emelianov, C. Millot, and I. Taupier-Letage, 2004: Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo–Weiss parameter. Deep-Sea Res. II, 51, 30093028, https://doi.org/10.1016/j.dsr2.2004.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, V. M., M. N. Koshlyakov, and A. S. Monin, Eds., 1986: Synoptic Eddies in the Ocean. Environmental Fluid Mechanics, Vol. 5, D. Reidel Publ. Company, 433 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1986: On the propagation of isolated multilayer and continuously stratified eddies. J. Phys. Oceanogr., 16, 709716, https://doi.org/10.1175/1520-0485(1986)016<0709:OTPOIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., and G. Reznik, 2019: Numerical solutions of the singular vortex problem. Phys. Fluids, 31, 066602, https://doi.org/10.1063/1.5099896.

  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MODE Group, 1978: The Mid-Ocean Dynamics Experiment. Deep-Sea Res., 25, 859910, https://doi.org/10.1016/0146-6291(78)90632-X.

  • Mory, M., 1985: Integral constraints on bottom and surface isolated eddies. J. Phys. Oceanogr., 15, 14331438, https://doi.org/10.1175/1520-0485(1985)015<1433:ICOBAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., 1981: On the β-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr., 11, 16621672, https://doi.org/10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., 1983: On the migration of isolated eddies with application to Gulf Stream rings. J. Mar. Res., 41, 399425, https://doi.org/10.1357/002224083788519687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., Y. Jia, E. Chassignet, and A. Bozec, 2011: Fast wind-induced migration of leddies in the South China Sea. J. Phys. Oceanogr., 41, 16831693, https://doi.org/10.1175/2011JPO4530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 1988: New stationary vortex solutions of the Hasegawa–Mima equation. J. Plasma Phys., 39, 413430, https://doi.org/10.1017/S0022377800026738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 1994: Steady vortices in plasmas and geophysical flows. Chaos, 4, 253267, https://doi.org/10.1063/1.166006.

  • Nycander, J., 2001: Drift velocity of radiating quasigeostrophic vortices. J. Phys. Oceanogr., 31, 21782185, https://doi.org/10.1175/1520-0485(2001)031<2178:DVORQV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, D. B., 1991: Rings in the ocean. Annu. Rev. Earth Planet. Sci., 19, 283311, https://doi.org/10.1146/annurev.ea.19.050191.001435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1983: The growth and decay of finite-amplitude baroclinic waves. J. Atmos. Sci., 40, 18631876, https://doi.org/10.1175/1520-0469(1983)040<1863:TGADOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Petersen, M. R., S. J. Williams, M. E. Maltrud, M. W. Hecht, and B. Hamann, 2013: A three-dimensional eddy census of a high-resolution global ocean simulation. J. Geophys. Res. Oceans, 118, 17591774, https://doi.org/10.1002/jgrc.20155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., 2020: Rectilinear propagation of quasi-monopolar vorticity patches. J. Fluid Mech., 904, A22, https://doi.org/10.1017/jfm.2020.667.

  • Radko, T., 2021: Playing pool on the beta-plane: How weak initial perturbations predetermine the long-term evolution of coherent vortices. J. Fluid Mech., 915, A89, https://doi.org/10.1017/jfm.2021.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., and I. Kamenkovich, 2017: On the topographic modulation of large-scale eddying flows. J. Phys. Oceanogr., 47, 21572172, https://doi.org/10.1175/JPO-D-17-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., and M. E. Stern, 1999: On the propagation of oceanic mesoscale vortices. J. Fluid Mech., 380, 3957, https://doi.org/10.1017/S0022112098003371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., and M. E. Stern, 2000: Self-propagating eddies on the stratified f-plane. J. Phys. Oceanogr., 30, 31343144, https://doi.org/10.1175/1520-0485(2000)030<3134:SPEOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441, https://doi.org/10.1146/annurev.fl.11.010179.002153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring Group, 1981: Gulf stream cold-core rings: Their physics, chemistry, and biology. Science, 212, 10911100, https://doi.org/10.1126/science.212.4499.1091.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 2012: Eddies in Marine Science. Springer, 609 pp.

  • Rossby, C. G., 1948: On displacements and intensity changes of atmospheric vortices. J. Mar. Res., 7, 175187.

  • Rossby, T., D. Dorson, and J. Fontaine, 1986: The RAFOS system. J. Atmos. Oceanic Technol., 3, 672679, https://doi.org/10.1175/1520-0426(1986)003<0672:TRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., M. G. Schlax, and D. B. Chelton, 2014: Randomness, symmetry, and scaling of mesoscale eddy lifecycles. J. Phys. Oceanogr., 44, 10121029, https://doi.org/10.1175/JPO-D-13-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangrà, P., and Coauthors, 2009: The canary eddy corridor: A major pathway for long-lived eddies in the subtropical North Atlantic. Deep-Sea Res. I, 56, 21002114, https://doi.org/10.1016/j.dsr.2009.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and C. Wunsch, 1999: Temporal changes in eddy energy of the oceans. Deep-Sea Res. II, 46, 77108, https://doi.org/10.1016/S0967-0645(98)00106-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., 2020a: How oceanic vortices can be super long-lived. Phys. Oceanogr., 27, 677691, https://doi.org/10.22449/1573-160X-2020-6-677-691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., 2020b: How baroclinic vortices intensify resulting from erosion of their cores and/or changing environment. Ocean Modell., 156, 101711, https://doi.org/10.1016/j.ocemod.2020.101711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., and T. Radko, 2019: On the peripheral intensification of two-dimensional vortices in smaller-scale randomly forcing flow. Phys. Fluids, 31, 101701, https://doi.org/10.1063/1.5118752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., and T. Radko, 2021: Why the most long-lived oceanic vortices are found in the subtropical westward flows. Ocean Modell., 161, 101782, https://doi.org/10.1016/j.ocemod.2021.101782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., T. Radko, and J. Nycander, 2021: Steady radiating baroclinic vortices in vertically sheared flows. Phys. Fluids, 33, 031705, https://doi.org/10.1063/5.0040298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swallow, J. C., 1955: A neutral-buoyancy float for measuring deep currents. Deep-Sea Res., 3, 7481, https://doi.org/10.1016/0146-6313(55)90037-X.

    • Search Google Scholar
    • Export Citation
  • Thoppil, P. G., J. G. Richman, and P. J. Hogan, 2011: Energetics of a global ocean circulation model compared to observations. Geophys. Res. Lett., 38, L15607, https://doi.org/10.1029/2011GL048347.

    • Search Google Scholar
    • Export Citation
  • Trott, C. B., B. Subrahmanyam, and E. S. Nyadjro, 2019: Influence of mesoscale features on mixed layer dynamics in the Arabian Sea. J. Geophys. Res. Oceans, 124, 33613377, https://doi.org/10.1029/2019JC014965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 964 pp.

  • Vandermeirsh, F., Y. Morel, and G. G. Sutyrin, 2002: Resistance of a coherent vortex to a vertical shear. J. Phys. Oceanogr., 32, 30893100, https://doi.org/10.1175/1520-0485(2002)032<3089:ROACVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J., 1793: Memoir of Jonathan Williams, on the use of the thermometer in discovering banks, soundings, &c. Trans. Amer. Philos. Soc., 3, 82100, https://doi.org/10.2307/1004854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., E. Chieusse-Gérard, and G. Flierl, 2019: Influence of bottom topography on vortex stability. J. Phys. Oceanogr., 49, 31993219, https://doi.org/10.1175/JPO-D-19-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 314 313 19
Full Text Views 134 132 13
PDF Downloads 155 153 14

On the Propagation and Translational Adjustment of Isolated Vortices in Large-Scale Shear Flows

View More View Less
  • 1 aNaval Postgraduate School, Monterey, California
Restricted access

Abstract

This study explores the dynamics of intense coherent vortices in large-scale vertically sheared flows. We develop an analytical theory for vortex propagation and validate it by a series of numerical simulations. Simulations are conducted using both stable and baroclinically unstable zonal background flows. We find that vortices in stable westward currents tend to adjust to an equilibrium state characterized by quasi-uniform zonal propagation. These vortices persist for long periods, during which they propagate thousands of kilometers from their points of origin. The adjustment tendency is realized to a much lesser extent in eastward background flows. These findings may help to explain the longevity of the observed oceanic vortices embedded in predominantly westward flows. Finally, we examine the influence of background mesoscale variability induced by baroclinic instability of large-scale flows on the propagation and persistence of isolated vortices.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry Gulliver, ltgulliv@nps.edu

Abstract

This study explores the dynamics of intense coherent vortices in large-scale vertically sheared flows. We develop an analytical theory for vortex propagation and validate it by a series of numerical simulations. Simulations are conducted using both stable and baroclinically unstable zonal background flows. We find that vortices in stable westward currents tend to adjust to an equilibrium state characterized by quasi-uniform zonal propagation. These vortices persist for long periods, during which they propagate thousands of kilometers from their points of origin. The adjustment tendency is realized to a much lesser extent in eastward background flows. These findings may help to explain the longevity of the observed oceanic vortices embedded in predominantly westward flows. Finally, we examine the influence of background mesoscale variability induced by baroclinic instability of large-scale flows on the propagation and persistence of isolated vortices.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry Gulliver, ltgulliv@nps.edu
Save