• Adcroft, A., and Coauthors, 2018: MITgcm User Manual. https://doi.org/10.5281/zenodo.1409237.

  • Asher, W. E., A. T. Jessup, R. Branch, and D. Clark, 2014: Observations of rain-induced near-surface salinity anomalies. J. Geophys. Res. Oceans, 119, 54835500, https://doi.org/10.1002/2014JC009954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auad, G., D. Roemmich, and J. Gilson, 2011: The California Current System in relation to the Northeast Pacific Ocean circulation. Prog. Oceanogr., 91, 576592, https://doi.org/10.1016/j.pocean.2011.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bograd, S. J., T. K. Chereskin, and D. Roemmich, 2001: Transport of mass, heat, salt, and nutrients in the southern California Current System: Annual cycle and interannual variability. J. Geophys. Res., 106, 92559275, https://doi.org/10.1029/1999JC000165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard, 2013: Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain. Ocean Sci., 9, 183192, https://doi.org/10.5194/os-9-183-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutin, J., N. Martin, G. Reverdin, S. Morisset, X. Yin, L. Centurioni, and N. Reul, 2014: Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations. J. Geophys. Res. Oceans, 119, 55335545, https://doi.org/10.1002/2014JC010070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brainerd, K., and M. Gregg, 1997: Turbulence and stratification on the Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment microstructure pilot cruise. J. Geophys. Res., 102, 10 43710 455, https://doi.org/10.1029/96JC03864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, D., D. Sengupta, E. D’Asaro, and S. Shivaprasad, 2021: Trapping of wind momentum in a salinity-stratified ocean. J. Geophys. Res. Oceans, 126, e2021JC017770, https://doi.org/10.1029/2021JC017770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., 2015: In situ, meteorological, physical, and profile data collected by Monterey Bay Aquarium Research Institute at OceanSITES site MBARI from 2004-04-30 to 2021-09-07 (NCEI Accession 0130040). NOAA National Centers for Environmental Information, accessed December 2020, https://www.ncei.noaa.gov/archive/accession/0130040.

  • Clayson, C. A., J. B. Edson, A. Paget, R. Graham, and B. Greenwood, 2019: Effects of rainfall on the atmosphere and the ocean during SPURS-2. Oceanography, 32, 8697, https://doi.org/10.5670/oceanog.2019.216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., M. D. Ohman, D. L. Rudkick, J. T. Sherman, and B. Hodges, 2008: Glider surveillance of physics and biology in the southern California Current System. Limnol. Oceanogr., 53, 21512168, https://doi.org/10.4319/lo.2008.53.5_part_2.2151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res., 112, C06011, https://doi.org/10.1029/2006JC003953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T., M. J. McPhaden, A. Dessier, and Y. Gouriou, 2005: Time and space scales for sea surface salinity in the tropical oceans. Deep-Sea Res. I, 52, 787813, https://doi.org/10.1016/j.dsr.2004.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drucker, R., and S. C. Riser, 2014: Validation of Aquarius sea surface salinity with Argo: Analysis of error due to depth of measurement and vertical salinity stratification. J. Geophys. Res. Oceans, 119, 46264637, https://doi.org/10.1002/2014JC010045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drushka, K., W. E. Asher, B. Ward, and K. Walesby, 2016: Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface. J. Geophys. Res. Oceans, 121, 26732689, https://doi.org/10.1002/2015JC011527.

    • Search Google Scholar
    • Export Citation
  • Drushka, K., W. E. Asher, A. T. Jessup, E. J. Thompson, S. Iyer, and D. Clark, 2019: Capturing fresh layers with the surface salinity profiler. Oceanography, 32, 7685, https://doi.org/10.5670/oceanog.2019.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, M. A., A. M. Wilson, and M. F. Ralph, 2019: Atmospheric river families: Definition and associated synoptic conditions. J. Hydrometeor., 20, 20912108, https://doi.org/10.1175/JHM-D-18-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., 2017: Catalog of landfalling atmospheric rivers along the western coast of North America. Scripps Institution of Oceanography, accessed December 2020, https://weclima.ucsd.edu/data-products/.

    • Crossref
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Accessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, D., V. Lyubchich, and S. T. Gille, 2020: Seasonal to interannual variability of upper ocean temperature and salinity: The role of atmospheric rivers. Ocean Sciences Meeting, San Diego, CA, Amer. Geophys. Union, AI14A-2255, https://agu.confex.com/agu/osm20/meetingapp.cgi/Paper/655323.

    • Crossref
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, https://doi.org/10.1109/MCSE.2007.55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iyer, S., and K. Drushka, 2021: The influence of preexisting stratification and tropical rain modes on the mixed layer salinity response to rainfall. J. Geophys. Res. Oceans, 126, e2021JC017574, https://doi.org/10.1029/2021JC017574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, K., F. Chavez, and G. Friederich, 1999: Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature, 398, 697700, https://doi.org/10.1038/19511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudela, R., and F. Chavez, 2004: The impact of coastal runoff on ocean color during an El Nino year in Central California. Deep-Sea Res. II, 51, 11731185, https://doi.org/10.1016/S0967-0645(04)00106-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482, https://doi.org/10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Ocean vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, R. J., and J. J. Simpson, 1987: The California Current System: The seasonal variability of its physical characteristics. J. Geophys. Res., 92, 12 94712 966, https://doi.org/10.1029/JC092iC12p12947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCulloch, M., P. Spurgeon, and A. Chuprin, 2012: Have mid-latitude ocean rain-lenses been seen by the SMOS satellite? Ocean Model., 43–44, 108111, https://doi.org/10.1016/j.ocemod.2011.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz Sabater, J., 2019: ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.e2161bac.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143157, https://doi.org/10.1038/s43017-020-0030-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1979: Observations of a rain-formed mixed layer. J. Phys. Oceanogr., 9, 643649, https://doi.org/10.1175/1520-0485(1979)009<0643:OOARFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., and M. Dettinger, 2011: Storms, floods and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, https://doi.org/10.1029/2011EO320001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., and M. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., T. Coleman, J. Neiman, J. Zamora, and D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. J. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. Roca, P. M. Soares, A. M. Wilson, R. M. Trigo, and F. M. Ralph, 2021: Uncertainty in different precipitation products in the case of two atmospheric river events. Environ. Res. Lett., 16, 045012, https://doi.org/10.1088/1748-9326/abe25b.

    • Search Google Scholar
    • Export Citation
  • Ren, A. S., and D. L. Rudnick, 2021: Temperature and salinity extremes from 2014–2019 in the California Current System and its source waters. Nat. Commun. Earth Environ., 2, 62, https://doi.org/10.1038/s43247-021-00131-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, L., and S. C. Riser, 2009: Seasonal salt budget in the northeast Pacific Ocean. J. Geophys. Res., 114, C12004, https://doi.org/10.1029/2009JC005307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., 2016: California underwater glider network. Scripps Institution of Oceanography, Instrument Development Group, accessed 8 January 2020, https://doi.org/10.21238/S8SPRAY1618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., K. Zaba, R. Todd, and R. Davis, 2017a: A climatology using data from the California Underwater Glider Network. Scripps Institution of Oceanography, Instrument Development Group, accessed 11 September 2020, https://doi.org/10.21238/S8SPRAY7292.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., K. D. Zaba, R. E. Todd, and R. E. Davis, 2017b: A climatology of the California Current System from a network of underwater gliders. Prog. Oceanogr., 154, 64106, https://doi.org/10.1016/j.pocean.2017.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, https://doi.org/10.5670/oceanog.2008.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., E. Di Lorenzo, and P. P. Niiler, 2005: Salinity variations in the southern California Current. J. Phys. Oceanogr., 35, 14211436, https://doi.org/10.1175/JPO2759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seabird Scientific, 2016: How accurate is salinity measured by my CTD? What factors impact accuracy? https://blog.seabird.com/ufaqs/how-accurate-is-salinity-measured-by-my-ctd-what-factors-impact-accuracy/.

  • Shields, C. A., and J. T. Kiehl, 2016: Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4. Geophys. Res. Lett., 43, 77677773, https://doi.org/10.1002/2016GL069476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W., P. Zavialov, and J. Moum, 1997: Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810822, https://doi.org/10.1175/1520-0485(1997)027<0810:DOTITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., S. Matt, and A. Fujimura, 2015: Three-dimensional dynamics of freshwater lenses in the ocean’s near-surface layer. Oceanography, 28, 142149, https://doi.org/10.5670/oceanog.2015.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPURS-2 Planning Group, 2015: From salty to fresh—salinity processes in the upper-ocean regional study-2 (SPURS-2): Diagnosing the physics of a rainfall-dominated salinity minimum. Oceanography, 28, 150159, https://doi.org/10.5670/oceanog.2015.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarek, M., F. Brissette, and R. Arsenault, 2020: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci., 24, 25272544, https://doi.org/10.5194/hess-24-2527-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., J. N. Moum, C. W. Fairall, and S. A. Rutledge, 2019: Wind limits on rain layers and diurnal warm layers. J. Geophys. Res. Oceans, 124, 897924, https://doi.org/10.1029/2018JC014130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomczak, M., 1995: Salinity variability in the surface layer of the tropical western Pacific Ocean. J. Geophys. Res., 100, 20 49920 515, https://doi.org/10.1029/95JC01544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N., and Coauthors, 2019: Satellite salinity observing system: Recent discoveries and the way forward. Front. Mar. Sci., 6, 243, https://doi.org/10.3389/fmars.2019.00243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walesby, K., J. Vialard, P. Minnett, A. Callaghan, and B. Ward, 2015: Observations indicative of rain-induced double diffusion in the ocean surface boundary layer. Geophys. Res. Lett., 42, 39633972, https://doi.org/10.1002/2015GL063506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western pacific. J. Climate, 9, 17121730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., C. Pauson, and A. Huyer, 1999: The effect of rainfall on the surface layer during a westerly wind burst in the western equatorial Pacific. J. Phys. Oceanogr., 29, 612632, https://doi.org/10.1175/1520-0485(1999)029<0612:TEOROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P., E. Guilyardi, R. Sutton, J. Gregory, and G. Madec, 2006: On the climate response of the low-latitude Pacific Ocean to changes in the global freshwater cycle. Climate Dyn., 27, 593611, https://doi.org/10.1007/s00382-006-0151-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., and Coauthors, 2020: Argo data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700.

    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, https://doi.org/10.1029/2010JC006937.

    • Search Google Scholar
    • Export Citation
  • Yu, L., S. A. Josey, F. M. Bingham, and T. Lee, 2020: Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Ann. N. Y. Acad. Sci., 1472, 7694, https://doi.org/10.1111/nyas.14354.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 395 387 36
Full Text Views 197 195 13
PDF Downloads 204 202 11

Ocean Surface Salinity Response to Atmospheric River Precipitation in the California Current System

Lauren HoffmanaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Lauren Hoffman in
Current site
Google Scholar
PubMed
Close
,
Matthew R. MazloffaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew R. Mazloff in
Current site
Google Scholar
PubMed
Close
,
Sarah T. GilleaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Sarah T. Gille in
Current site
Google Scholar
PubMed
Close
,
Donata GigliobUniversity of Colorado Boulder, Boulder, Colorado

Search for other papers by Donata Giglio in
Current site
Google Scholar
PubMed
Close
, and
Aniruddh VaradarajancDepartment of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Aniruddh Varadarajan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on the ocean can generate a buoyant layer of freshwater that impacts exchanges between the surface and the mixed layer. These “fresh lenses” are important for weather and climate because they may impact the ocean stratification at all time scales. Here we use in situ ocean data, collocated with AR events, and a one-dimensional configuration of a general circulation model, to investigate the impact of AR precipitation on surface ocean salinity in the California Current System (CCS) on seasonal and event-based time scales. We find that at coastal and onshore locations the CCS freshens through the rainy season due to AR events, and years with higher AR activity are associated with a stronger freshening signal. On shorter time scales, model simulations suggest that events characteristic of CCS ARs can produce salinity changes that are detectable by ocean instruments (≥0.01 psu). Here, the surface salinity change depends linearly on rain rate and inversely on wind speed. Higher wind speeds (U > 8 m s−1) induce mixing, distributing freshwater inputs to depths greater than 20 m. Lower wind speeds (U ≤ 8 m s−1) allow freshwater lenses to remain at the surface. Results suggest that local precipitation is important in setting the freshwater seasonal cycle of the CCS and that the formation of freshwater lenses should be considered for identifying impacts of atmospheric variability on the upper ocean in the CCS on weather event time scales.

Significance Statement

Atmospheric rivers produce large amounts of rainfall. The purpose of this study is to understand how this rain impacts the surface ocean in the California Current System on seasonal and event time scales. Our results show that a greater precipitation over the rainy season leads to a larger decrease in salinity over time. On shorter time scales, these atmospheric river precipitation events commonly produce a surface salinity response that is detectable by ocean instruments. This salinity response depends on the amount of rainfall and the wind speed. In general, higher wind speeds will cause the freshwater input from rain to mix deeper, while lower wind speeds will have reduced mixing, allowing a layer of freshwater to persist at the surface.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lauren Hoffman, lahoffma@eng.ucsd.edu

Abstract

Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on the ocean can generate a buoyant layer of freshwater that impacts exchanges between the surface and the mixed layer. These “fresh lenses” are important for weather and climate because they may impact the ocean stratification at all time scales. Here we use in situ ocean data, collocated with AR events, and a one-dimensional configuration of a general circulation model, to investigate the impact of AR precipitation on surface ocean salinity in the California Current System (CCS) on seasonal and event-based time scales. We find that at coastal and onshore locations the CCS freshens through the rainy season due to AR events, and years with higher AR activity are associated with a stronger freshening signal. On shorter time scales, model simulations suggest that events characteristic of CCS ARs can produce salinity changes that are detectable by ocean instruments (≥0.01 psu). Here, the surface salinity change depends linearly on rain rate and inversely on wind speed. Higher wind speeds (U > 8 m s−1) induce mixing, distributing freshwater inputs to depths greater than 20 m. Lower wind speeds (U ≤ 8 m s−1) allow freshwater lenses to remain at the surface. Results suggest that local precipitation is important in setting the freshwater seasonal cycle of the CCS and that the formation of freshwater lenses should be considered for identifying impacts of atmospheric variability on the upper ocean in the CCS on weather event time scales.

Significance Statement

Atmospheric rivers produce large amounts of rainfall. The purpose of this study is to understand how this rain impacts the surface ocean in the California Current System on seasonal and event time scales. Our results show that a greater precipitation over the rainy season leads to a larger decrease in salinity over time. On shorter time scales, these atmospheric river precipitation events commonly produce a surface salinity response that is detectable by ocean instruments. This salinity response depends on the amount of rainfall and the wind speed. In general, higher wind speeds will cause the freshwater input from rain to mix deeper, while lower wind speeds will have reduced mixing, allowing a layer of freshwater to persist at the surface.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lauren Hoffman, lahoffma@eng.ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.56 MB)
Save