• Allen, J. S., 1980: Models of wind-driven currents on the continental shelf. Annu. Rev. Fluid Mech., 12, 389433, https://doi.org/10.1146/annurev.fl.12.010180.002133.

    • Search Google Scholar
    • Export Citation
  • Andres, M., 2016: On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras: Gulf Stream Path Destabilization. Geophys. Res. Lett., 43, 98369842, https://doi.org/10.1002/2016GL069966.

    • Search Google Scholar
    • Export Citation
  • Bigelow, H. B., 1927: Physical oceanography of the Gulf of Maine. Bull. U.S. Bur. Fish., 40, 5111027.

  • Bisagni, J. J., O. C. Nichols, and R. Pettipas, 2019: Interannual variability of Gulf Stream warm-core ring interactions with the outer continental shelf and potential broad scale relationships with longfin squid (Doryteuthis pealeii) relative abundance, 1981–2004. ICES J. Mar. Sci., 76, 12571270, https://doi.org/10.1093/icesjms/fsz144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brickman, D., D. Hebert, and Z. Wang, 2018: Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf Res., 156, 1122, https://doi.org/10.1016/j.csr.2018.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1990: On the damping of free coastal-trapped waves. J. Phys. Oceanogr., 20, 12191225, https://doi.org/10.1175/1520-0485(1990)020<1219:OTDOFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1991: Coastal-trapped waves and wind-driven currents over the continental shelf. Annu. Rev. Fluid Mech., 23, 389412, https://doi.org/10.1146/annurev.fl.23.010191.002133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2006: Coastal-trapped waves with finite bottom friction. Dyn. Atmos. Oceans, 41, 172190, https://doi.org/10.1016/j.dynatmoce.2006.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, D. A., 1987: The influence of warm-core rings on slope water entering the Gulf of Maine. J. Geophys. Res., 92, 81838196, https://doi.org/10.1029/JC092iC08p08183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, A. H., A. Gangopadhyay, and J. J. Bisagni, 2009: Interannual variability of Gulf Stream warm-core rings in response to the North Atlantic Oscillation. Cont. Shelf Res., 29, 856869, https://doi.org/10.1016/j.csr.2009.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Chen, K., R. He, B. S. Powell, G. G. Gawarkiewicz, A. M. Moore, and H. G. Arango, 2014: Data assimilative modeling investigation of Gulf Stream Warm Core Ring interaction with continental shelf and slope circulation. J. Geophys. Res. Oceans, 119, 59685991, https://doi.org/10.1002/2014JC009898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Kwon, K. Chen, P. Fratantoni, G. Gawarkiewicz, and T. M. Joyce, 2020: Long‐term SST variability on the northwest Atlantic continental shelf and slope. Geophys. Res. Lett., 47, e2019GL085455, https://doi.org/10.1029/2019GL085455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherian, D. A., and K. H. Brink, 2016: Offshore transport of shelf water by deep-ocean eddies. J. Phys. Oceanogr., 46, 35993621, https://doi.org/10.1175/JPO-D-16-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherian, D. A., and K. H. Brink, 2018: Shelf flows forced by deep-ocean anticyclonic eddies at the shelf break. J. Phys. Oceanogr., 48, 11171138, https://doi.org/10.1175/JPO-D-17-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchill, J. H., P. C. Cornillon, and G. W. Milkowski, 1986: A cyclonic eddy and shelf-slope water exchange associated with a Gulf Stream warm-core ring. J. Geophys. Res., 91, 96159623, https://doi.org/10.1029/JC091iC08p09615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1977: Observational and numerical evidence for wind-forced coastal trapped long waves. J. Phys. Oceanogr., 7, 231247, https://doi.org/10.1175/1520-0485(1977)007<0231:OANEFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., W. G. Zhang, and Y. Li, 2021: Variability of deep water in Jordan Basin of the Gulf of Maine: Influence of Gulf Stream warm core rings and the Nova Scotia Current. J. Geophys. Res. Oceans, 126, https://doi.org/10.1029/2020JC017136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 15351555, https://doi.org/10.1175/2011JPO4601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fratantoni, P. S., and R. S. Pickart, 2007: The Western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr., 37, 25092533, https://doi.org/10.1175/JPO3123.1.

    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, A., G. Gawarkiewicz, E. N. S. Silva, M. Monim, and J. Clark, 2019: An observed regime shift in the formation of warm core rings from the Gulf Stream. Sci. Rep., 9, 12319, https://doi.org/10.1038/s41598-019-48661-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfield, N., and D. L. Evans, 1987: Shelf water entrainment by Gulf Stream warm-core rings. J. Geophys. Res., 92, 13 003–13 012, https://doi.org/10.1029/JC092iC12p13003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and R. G. Fairbanks, 2001: Water sources for Georges Bank. Deep-Sea Res. II, 48, 95114, https://doi.org/10.1016/S0967-0645(00)00082-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J., 1986: The Rockall slope current and shelf-edge processes. Proc. Roy. Soc. Edinburgh, 88B, 83–101, https://doi.org/10.1017/S0269727000004486.

    • Crossref
    • Export Citation
  • Huthnance, J. M., 1978: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, https://doi.org/10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., E. García-Ladona, and J. Font, 2003: Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol., 20, 772778, https://doi.org/10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T., and Coauthors, 1984: Rapid evolution of a Gulf Stream warm-core ring. Nature, 308, 837840, https://doi.org/10.1038/308837a0.

  • Joyce, T. M., J. K. B. Bishop, and O. B. Brown, 1992: Observations of offshore shelf-water transport induced by a warm-core ring. Deep-Sea Res., 39, S97S113, https://doi.org/10.1016/S0198-0149(11)80007-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2012: Lee effects of localized upwelling in a shelf-break canyon. Cont. Shelf Res., 42, 7888, https://doi.org/10.1016/j.csr.2012.05.005.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., and P. R. Ohmann, 2006: Iterative solutions of the gradient wind equation. Comput. Geosci., 32, 656662, https://doi.org/10.1016/j.cageo.2005.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malan, N., B. Backeberg, A. Biastoch, J. V. Durgadoo, A. Samuelsen, C. Reason, and J. Hermes, 2018: Agulhas Current meanders facilitate shelf-slope exchange on the East Agulhas Bank. J. Geophys. Res. Oceans, 123, 47624778, https://doi.org/10.1029/2017JC013602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malan, N., and Coauthors, 2020: Eddy-driven cross-shelf transport in the East Australian current separation zone. J. Geophys. Res. Oceans, 125, e2019JC015613, https://doi.org/10.1029/2019JC015613.

    • Crossref
    • Export Citation
  • Mertz, F., and J. F. Legeais, 2020: Product user guide and specification: Sea level v1.2. ECMWF Copernicus Rep., 30 pp., https://datastore.copernicus-climate.eu/documents/satellite-sea-level/D3.SL.1-v1.2_PUGS_of_v1DT2018_SeaLevel_products_v2.4.pdf.

    • Crossref
    • Export Citation
  • Penven, P., I. Halo, S. Pous, and L. Marié, 2014: Cyclogeostrophic balance in the Mozambique Channel. J. Geophys. Res. Oceans, 119, 10541067, https://doi.org/10.1002/2013JC009528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pershing, A. J., and Coauthors, 2015: Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science, 350, 809812, https://doi.org/10.1126/science.aac9819.

    • Search Google Scholar
    • Export Citation
  • Pettigrew, N. R., C. P. Fikes, and M. K. Beard, 2011: Advances in the ocean observing system in the Gulf of Maine: Technical capabilities and scientific results. Mar. Technol. Soc. J., 45, 8597, https://doi.org/10.4031/MTSJ.45.1.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., R. J. Schlitz, and W. R. Wright, 1985: The deep flow through the Northeast Channel, Gulf of Maine. J. Phys. Oceanogr., 15, 17901808, https://doi.org/10.1175/1520-0485(1985)015<1790:TDFTTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, J. P., J. A. Yoder, and D. W. Townsend, 2001: Influence of a Gulf Stream warm-core ring on water mass and chlorophyll distributions along the southern flank of Georges Bank. Deep-Sea Res. II, 48, 159178, https://doi.org/10.1016/S0967-0645(00)00117-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlitz, R. J., and E. B. Cohen, 1984: A nitrogen budget for the Gulf of Maine and Georges Bank. Biol. Oceanogr., 3, 203222.

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., 1983: The mean and seasonal circulation off southwest Nova Scotia. J. Phys. Oceanogr., 13, 10341054, https://doi.org/10.1175/1520-0485(1983)013<1034:TMASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., R. W. Houghton, R. G. Fairbanks, and D. G. Mountain, 2001: Interannual variability of boundary fluxes and water mass properties in the Gulf of Maine and on Georges Bank: 1993–1997. Deep-Sea Res. II, 48, 3770, https://doi.org/10.1016/S0967-0645(00)00081-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., N. R. Pettigrew, P. Yeats, D. W. Townsend, and G. Han, 2012: Regime shift in the Gulf of Maine. Amer. Fish. Soc. Symp., 79, 185203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, D. W., 1998: Sources and cycling of nitrogen in the Gulf of Maine. J. Mar. Syst., 16, 283295, https://doi.org/10.1016/S0924-7963(97)00024-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, D. W., N. D. Rebuck, M. A. Thomas, L. Karp-Boss, and R. M. Gettings, 2010: A changing nutrient regime in the Gulf of Maine. Cont. Shelf Res., 30, 820832, https://doi.org/10.1016/j.csr.2010.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., and C. N. K. Mooers, 1976: Coastal-trapped waves in a continuously stratified ocean. J. Phys. Oceanogr., 6, 853863, https://doi.org/10.1175/1520-0485(1976)006<0853:CTWIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and D. C. Chapman, 1990: Scattering of coastal-trapped waves by irregularities in coastlines and topography. J. Phys. Oceanogr., 20, 396421, https://doi.org/10.1175/1520-0485(1990)020<0396:SOCTWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. G., D. A. Greenberg, J. W. Loder, and P. C. Smith, 1986: The steady-state barotropic response of the Gulf of Maine and adjacent regions to surface wind stress. J. Phys. Oceanogr., 16, 947966, https://doi.org/10.1175/1520-0485(1986)016<0947:TSSBRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., F. Chai, and N. R. Pettigrew, 2000: A model study of the seasonal circulation in the Gulf of Maine. J. Phys. Oceanogr., 30, 25, https://doi.org/10.1175/1520-0485(2000)030<1111:AMSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and G. G. Gawarkiewicz, 2015a: Dynamics of the direct intrusion of Gulf Stream ring water onto the Mid-Atlantic Bight shelf. Geophys. Res. Lett., 42, 76877695, https://doi.org/10.1002/2015GL065530.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and G. G. Gawarkiewicz, 2015b: Length-scale of the finite-amplitude meanders of shelfbreak fronts. J. Phys. Oceanogr., 45, 25982620, http://doi.org/10.1175JPO-D-14-0249.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and S. J. Lentz, 2017: Wind-driven circulation in a shelf valley. Part I: Mechanism of the asymmetrical response to along-shelf winds in opposite directions. J. Phys. Oceanogr., 47, 29272947, https://doi.org/10.1175/JPO-D-17-0083.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and J. Partida, 2018: Frontal subduction of the Mid-Atlantic Bight shelf water at the onshore edge of a warm-core ring. J. Geophys. Res. Oceans, 123, 77957818, https://doi.org/10.1029/2018JC013794.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 358 350 36
Full Text Views 144 141 13
PDF Downloads 188 177 15

Impact of Gulf Stream Warm-Core Rings on Slope Water Intrusion into the Gulf of Maine

View More View Less
  • 1 aApplied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 bCSS Inc. at NOAA/National Centers for Coastal Ocean Science, Silver Spring, Maryland
Restricted access

Abstract

Intruding slope water is a major source of nutrients to sustain the high biological productivity in the Gulf of Maine (GoM). Slope water intrusion into the GoM is affected by Gulf Stream warm-core rings (WCRs) impinging onto the nearby shelf edge. This study combines long-term mooring measurements, satellite remote sensing data, an idealized numerical ocean model, and a linear coastal-trapped wave (CTW) model to examine the impact of WCRs on slope water intrusion into the GoM through the Northeast Channel. Analysis of satellite sea surface height and temperature data shows that the slope sea region off the GoM is a hotspot of ring activities. A significant linear relationship is found between interannual variations of ring activities in the slope sea region off the GoM and bottom salinity at the Northeast Channel, suggesting the importance of WCRs in modulating variability of intruding slope water. Analysis of the mooring data reveals enhanced slope water intrusion through bottom-intensified along-channel flow following impingements of WCRs on the nearby shelf edge. Numerical simulations qualitatively reproduce the observed WCR impingement processes and associated episodic enhancement of slope water intrusion in the Northeast Channel. Diagnosis of the model result indicates that baroclinic CTWs excited by the ring–topography interaction are responsible for the episodically intensified subsurface along-channel inflow, which carries more slope water into the GoM. A WCR that impinges onto the shelf edge to the northeast of the Northeast Channel tends to generate stronger CTWs and cause stronger enhancement of the slope water intrusion into the GoM.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weifeng (Gordon) Zhang, wzhang@whoi.edu

Abstract

Intruding slope water is a major source of nutrients to sustain the high biological productivity in the Gulf of Maine (GoM). Slope water intrusion into the GoM is affected by Gulf Stream warm-core rings (WCRs) impinging onto the nearby shelf edge. This study combines long-term mooring measurements, satellite remote sensing data, an idealized numerical ocean model, and a linear coastal-trapped wave (CTW) model to examine the impact of WCRs on slope water intrusion into the GoM through the Northeast Channel. Analysis of satellite sea surface height and temperature data shows that the slope sea region off the GoM is a hotspot of ring activities. A significant linear relationship is found between interannual variations of ring activities in the slope sea region off the GoM and bottom salinity at the Northeast Channel, suggesting the importance of WCRs in modulating variability of intruding slope water. Analysis of the mooring data reveals enhanced slope water intrusion through bottom-intensified along-channel flow following impingements of WCRs on the nearby shelf edge. Numerical simulations qualitatively reproduce the observed WCR impingement processes and associated episodic enhancement of slope water intrusion in the Northeast Channel. Diagnosis of the model result indicates that baroclinic CTWs excited by the ring–topography interaction are responsible for the episodically intensified subsurface along-channel inflow, which carries more slope water into the GoM. A WCR that impinges onto the shelf edge to the northeast of the Northeast Channel tends to generate stronger CTWs and cause stronger enhancement of the slope water intrusion into the GoM.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weifeng (Gordon) Zhang, wzhang@whoi.edu
Save