• Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MITGCM. Proc. ECMWF Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling, Reading, United Kingdom, ECMWF, 139149, http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barron, C. N., A. B. Kara, and G. A. Jacobs, 2009: Objective estimates of westward Rossby wave and eddy propagation from sea surface height analyses. J. Geophys. Res., 114, C03013, https://doi.org/10.1029/2008JC005044.

    • Search Google Scholar
    • Export Citation
  • Busalacchi, A. J., and M. A. Cane, 1988: The effect of varying stratification on low-frequency equatorial motions. J. Phys. Oceanogr., 18, 801812, https://doi.org/10.1175/1520-0485(1988)018<0801:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., L. M. Ivanov, O. V. Melnichenko, and N. C. Wells, 2007: On long baroclinic Rossby waves in the tropical North Atlantic observed from profiling floats. J. Geophys. Res., 112, C05032, https://doi.org/10.1029/2006JC003698.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1991: On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. J. Geophys. Res., 96, 32893305, https://doi.org/10.1029/90JC00985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 12241235, https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., and Coauthors, 1999: World Ocean Database 1998: Documentation and quality control version 2.0. National Oceanographic Data Center Internal Rep. 14, 188 pp., https://repository.library.noaa.gov/view/noaa/1173/noaa_1173_DS1.pdf.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and D. B. Chelton, 1999: The modification of long planetary waves by homogeneous potential vorticity layers. J. Phys. Oceanogr., 29, 500511, https://doi.org/10.1175/1520-0485(1999)029<0500:TMOLPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eabry, M. D., A. S. Taschetto, A. M. Maharaj, and A. Sen Gupta, 2021: What determines the lagged ENSO response in the south-west Indian Ocean? Geophys. Res. Lett., 48, e2020GL091958, https://doi.org/10.1029/2020GL091958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2004: Data Analysis Methods in Physical Oceanography. Elsevier, 638 pp.

  • Feng, M., G. Meyers, A. Pearce, and S. Wijffels, 2003: Annual and interannual variations of the Leeuwin Current at 32°S. J. Geophys. Res., 108, 3355, https://doi.org/10.1029/2002JC001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, and T. Lee, 2010: Decadal variability of the Pacific subtropical cells and their influence on the south-east Indian Ocean. Geophys. Res. Lett., 37, L09606, https://doi.org/10.1029/2010GL042796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., C. Böning, A. Biastoch, E. Behrens, E. Weller, and Y. Masumoto, 2011: The reversal of the multidecadal trends of the equatorial Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current transports. Geophys. Res. Lett., 38, L11604, https://doi.org/10.1029/2011GL047291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S.-P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaillard, F., T. Reynaud, V. Thierry, N. Kolodziejczyk, and K. von Schuckmann, 2016: In situ-based reanalysis of the global ocean temperature and salinity with ISAS: Variability of the heat content and steric height. J. Climate, 29, 13051323, https://doi.org/10.1175/JCLI-D-15-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42, 359393, https://doi.org/10.1357/002224084788502756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and B. Petrie, 1981: Dynamical aspects of the flow through the strait of Belle Isle. J. Phys. Oceanogr., 11, 376393, https://doi.org/10.1175/1520-0485(1981)011<0376:DAOTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2016: Warming of the global ocean: Spatial structure and water-mass trends. J. Climate, 29, 49494963, https://doi.org/10.1175/JCLI-D-15-0607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and N. Suginohara, 1999: Effects of locally enhanced vertical diffusivity over rough topography on the world ocean circulation. J. Geophys. Res., 104, 23 36423 374, https://doi.org/10.1029/1999JC900191.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, https://doi.org/10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2000: Climate variability inferred from a continuously stratified model of the ideal-fluid thermocline. J. Phys. Oceanogr., 30, 13891406, https://doi.org/10.1175/1520-0485(2000)030<1389:CVIFAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and J. Pedlosky, 1999: Climate variability inferred from a layered model of the ventilated thermocline. J. Phys. Oceanogr., 29, 779790, https://doi.org/10.1175/1520-0485(1999)029<0779:CVIFAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and J. Pedlosky, 2000: Climate variability induced by anomalous buoyancy forcing in a multilayer model of the ventilated thermocline. J. Phys. Oceanogr., 30, 30093021, https://doi.org/10.1175/1520-0485(2001)031<3009:CVIBAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isoguchi, O., H. Kawamura, and T. Kono, 1997: A study on wind-driven circulation in the subarctic North Pacific using TOPEX/POSEIDON altimeter data. J. Geophys. Res., 102, 12 45712 468, https://doi.org/10.1029/97JC00447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMPI-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 14631482, https://doi.org/10.1007/s00382-013-1961-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33, 784801, https://doi.org/10.1175/1520-0485(2003)33<784:LEPWPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. De Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., P.-M. Annaig, and G. Fabienne, 2017: ISAS-15 temperature and salinity gridded fields. SEANOE, accessed 11 September 2020, https://doi.org/10.17882/52367.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1999a: Forced planetary wave response in a thermocline gyre. J. Phys. Oceanogr., 29, 10361055, https://doi.org/10.1175/1520-0485(1999)029<1036:FPWRIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1999b: Planetary wave modes in the thermocline: Non-Doppler-shift mode, advective mode and Green mode. Quart. J. Roy. Meteor. Soc., 125, 13151339, https://doi.org/10.1002/qj.1999.49712555611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and R.-H. Zhang, 1999: Propagation and mechanism of decadal upper-ocean variability in the north Pacific. Geophys. Res. Lett., 26, 739742, https://doi.org/10.1029/1999GL900081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, M. Feng, and A. Schiller, 2015: Initiation and amplification of the Ningaloo Niño. Climate Dyn., 45, 23672385, https://doi.org/10.1007/s00382-015-2477-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298, 603635, https://doi.org/10.1098/rsta.1981.0002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, https://doi.org/10.1175/MWR2912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., and M. L. Vianna, 2019: Quasi-biennial Rossby and Kelvin waves in the south Indian Ocean: Tropical and subtropical modes and the Indian Ocean dipole. Deep-Sea Res. II, 166, 4363, https://doi.org/10.1016/j.dsr2.2019.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, N. L. Bindoff, C. M. Domingues, and M. L. Vianna, 2014: South Indian Countercurrent and associated fronts. J. Geophys. Res. Oceans, 119, 67636791, https://doi.org/10.1002/2014JC010076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., 2018: Annual Rossby waves below the pycnocline in the Indian Ocean. J. Geophys. Res. Oceans, 123, 94059415, https://doi.org/10.1029/2018JC014362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., 2020: Variability in meridional transport of the subtropical circulation in the south Indian Ocean for the period from 2006 to 2017. J. Geophys. Res. Oceans, 124, e2019JC015874, https://doi.org/10.1029/2019JC015874.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., 2021: Spiciness anomalies of Subantarctic Mode Water in the south Indian Ocean. J. Climate, 34, 39273953, https://doi.org/10.1175/JCLI-D-20-0482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2018: The shallow overturning circulation in the Indian Ocean. J. Phys. Oceanogr., 48, 413434, https://doi.org/10.1175/JPO-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2021a: Interannual variability in sea surface height at southern midlatitudes of the Indian Ocean. J. Phys. Oceanogr., 51, 15951609, https://doi.org/10.1175/JPO-D-20-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2021b: Predicting interannual variability in sea surface height along the west coast of Australia using a simple ocean model. Geophys. Res. Lett., 48, e2021GL094592, https://doi.org/10.1029/2021GL094592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakano, H., and N. Suginohara, 2002: Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model. J. Phys. Oceanogr., 32, 12091227, https://doi.org/10.1175/1520-0485(2002)032<1209:EOBBLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., 2004: Sensitivity to wave breaking and the Prandtl number in the ocean mixed layer model and its dependence on latitude. Geophys. Res. Lett., 31, L23305, https://doi.org/10.1029/2004GL021289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osafune, S., S. Masuda, and N. Sugiura, 2014a: Role of the oceanic bridge in linking the 18.6 year modulation of tidal mixing and long-term SST change in the North Pacific. Geophys. Res. Lett., 41, 72847290, https://doi.org/10.1002/2014GL061737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osafune, S., T. Doi, S. Masuda, N. Sugiura, and T. Hemmi, 2014b: Estimated state of ocean for climate research (ESTOC). JAMSTEC, accessed 6 July 2021, https://doi.org/10.17596/0000106.

    • Search Google Scholar
    • Export Citation
  • Osafune, S., S. Masuda, N. Sugiura, and T. Doi, 2015: Evaluation of the applicability of the Estimated State of the Global Ocean for Climate Research (ESTOC) data set. Geophys. Res. Lett., 42, 49034911, https://doi.org/10.1002/2015GL064538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and A. Gnanadesikan, 1998: Transient response in a z-level ocean model that resolves topography with partial cells. Mon. Wea. Rev., 126, 32483270, https://doi.org/10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. Griffies, 2000: MOM 3.0 Manual. Geophysical Fluid Dynamics Laboratory, 680 pp.

  • Périgaud, C., and P. Delecluse, 1992: Annual sea level variations in the southern tropical Indian Ocean from Geosat and shallow-water simulations. J. Geophys. Res., 97, 20 16920 178, https://doi.org/10.1029/92JC01961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 2001: Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106, 24072422, https://doi.org/10.1029/1999JC000031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32, 353375, https://doi.org/10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015,1609:AIISAS.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, https://doi.org/10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L., and C. A. Ladd, 2004: The response of the North Pacific Ocean to decadal variability in atmospheric forcing: Wind versus buoyancy forcing. J. Phys. Oceanogr., 34, 13731386, https://doi.org/10.1175/1520-0485(2004)034<1373:TROTNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., and Coauthors, 2015: An improved simulation of the deep Pacific Ocean using optimally estimated vertical diffusivity based on the Green’s function method. Geophys. Res. Lett., 42, 99169924, https://doi.org/10.1002/2015GL065940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, K. Ogawa, T. Kuragano, H. Tsujino, and M. Kamachi, 2016: Data assimilation of sea ice concentration into a global ocean–sea ice model with corrections for atmospheric forcing and ocean temperature fields. J. Oceanogr., 72, 235262, https://doi.org/10.1007/s10872-015-0326-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., and Coauthors, 2019: Effects of inclusion of adjoint sea ice rheology on backward sensitivity evolution examined using an adjoint ocean–sea ice model. Mon. Wea. Rev., 147, 21452162, https://doi.org/10.1175/MWR-D-18-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., H. Hasumi, and N. Suginohara, 2000: Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depths. J. Phys. Oceanogr., 30, 28532865, https://doi.org/10.1175/1520-0485(2001)031<2853:DPCCBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Sci. Adv., 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 12321253, https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, W., M. Feng, Y. Du, A. Schiller, and D. Wang, 2013: Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports. J. Geophys. Res. Oceans, 118, 13021315, https://doi.org/10.1002/jgrc.20129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 443 443 23
Full Text Views 157 157 3
PDF Downloads 185 185 5

Second Baroclinic Mode Rossby Waves in the South Indian Ocean

Motoki NaguraaJapan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan

Search for other papers by Motoki Nagura in
Current site
Google Scholar
PubMed
Close
and
Satoshi OsafuneaJapan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan

Search for other papers by Satoshi Osafune in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many previous studies of midlatitude Rossby waves have examined satellite altimetry data, which reflect variability near the surface above the pycnocline. Argo float observations provide hydrographic data in the upper 2000 m, which likely monitor subsurface variability below the pycnocline. This study examines the variability in meridional velocity at midlatitudes and investigates Rossby waves in the southern Indian Ocean using an ocean reanalysis generated by a 4DVAR method. The results show two modes of variability. One is trapped near the surface and propagates to the west at a phase speed close to that of first baroclinic mode Rossby waves. This mode is representative of variability detected by satellite altimetry. The other mode has a local peak in amplitude at ∼600-m depth and propagates to the west at a phase speed 3 times slower than the first baroclinic mode. Such slowly propagating signals are observed globally, but they are largest in amplitude in the southern Indian Ocean and consistent in phase speed with the second baroclinic mode. Results from numerical experiments using an OGCM show that zonal winds in the tropical Pacific Ocean related to ENSO are the primary driver of slowly propagating signals in the southern Indian Ocean. Wind forcing in the tropical Pacific Ocean drives a surface trapped jet that propagates via the Indonesian Archipelago and excites subsurface variability in meridional velocity in the southern Indian Ocean. In addition, surface heat flux and meridional winds near the west coast of Australia can drive subsurface variability.

Significance Statement

Many previous studies of midlatitude Rossby waves have used satellite altimetry measurements, which reflect variability in the upper few hundred meters of the ocean. Argo float observations have provided in situ hydrographic observations in the upper 2000 m, and these enable us to examine subsurface variability with high reliability. In this study, we used output from an ocean reanalysis, which assimilates in situ observations, and found that the meridional velocity below the surface (∼600-m depth) of the southern Indian Ocean propagates at a phase speed 3 times slower than that of surface variability. These slowly propagating signals can be of climatic importance because of their possible impact on meridional heat transport. We also discuss the driving force of these slowly propagating signals.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Motoki Nagura, nagura@jamstec.go.jp

Abstract

Many previous studies of midlatitude Rossby waves have examined satellite altimetry data, which reflect variability near the surface above the pycnocline. Argo float observations provide hydrographic data in the upper 2000 m, which likely monitor subsurface variability below the pycnocline. This study examines the variability in meridional velocity at midlatitudes and investigates Rossby waves in the southern Indian Ocean using an ocean reanalysis generated by a 4DVAR method. The results show two modes of variability. One is trapped near the surface and propagates to the west at a phase speed close to that of first baroclinic mode Rossby waves. This mode is representative of variability detected by satellite altimetry. The other mode has a local peak in amplitude at ∼600-m depth and propagates to the west at a phase speed 3 times slower than the first baroclinic mode. Such slowly propagating signals are observed globally, but they are largest in amplitude in the southern Indian Ocean and consistent in phase speed with the second baroclinic mode. Results from numerical experiments using an OGCM show that zonal winds in the tropical Pacific Ocean related to ENSO are the primary driver of slowly propagating signals in the southern Indian Ocean. Wind forcing in the tropical Pacific Ocean drives a surface trapped jet that propagates via the Indonesian Archipelago and excites subsurface variability in meridional velocity in the southern Indian Ocean. In addition, surface heat flux and meridional winds near the west coast of Australia can drive subsurface variability.

Significance Statement

Many previous studies of midlatitude Rossby waves have used satellite altimetry measurements, which reflect variability in the upper few hundred meters of the ocean. Argo float observations have provided in situ hydrographic observations in the upper 2000 m, and these enable us to examine subsurface variability with high reliability. In this study, we used output from an ocean reanalysis, which assimilates in situ observations, and found that the meridional velocity below the surface (∼600-m depth) of the southern Indian Ocean propagates at a phase speed 3 times slower than that of surface variability. These slowly propagating signals can be of climatic importance because of their possible impact on meridional heat transport. We also discuss the driving force of these slowly propagating signals.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Motoki Nagura, nagura@jamstec.go.jp
Save