• Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, https://doi.org/10.1175/JPO-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R., and C. Wortham, 2015: Phase speed cross spectra of eddy heat fluxes in the eastern Pacific. J. Phys. Oceanogr., 45, 12851301, https://doi.org/10.1175/JPO-D-14-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315, https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, K., S. Minobe, Y. Tanimoto, and Y. Sasai, 2013: Southward eddy heat transport occurring along southern flanks of the Kuroshio Extension and the Gulf Stream in a 1/10° global ocean general circulation model. J. Phys. Oceanogr., 43, 18991910, https://doi.org/10.1175/JPO-D-12-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., and F. O. Bryan, 2013: A comparison of mesoscale eddy heat fluxes from observations and a high-resolution ocean model simulation of the Kuroshio extension. J. Phys. Oceanogr., 43, 25632570, https://doi.org/10.1175/JPO-D-13-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., D. R. Watts, and K. A. Donohue, 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 144°–148°E. Part I: Mean structure. J. Phys. Oceanogr., 43, 15331550, https://doi.org/10.1175/JPO-D-12-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, and F. O. Bryan, 2020: The global sink of available potential energy by mesoscale air-sea interaction. J. Adv. Model. Earth Syst., 12, e2020MS002118, https://doi.org/10.1029/2020MS002118.

    • Crossref
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 208 pp., https://doi.org/10.25607/OBP-1454.

    • Crossref
    • Export Citation
  • Bryan, F., and S. Bachman, 2015: Isohaline salinity budget of the North Atlantic salinity maximum. J. Phys. Oceanogr., 45, 724736, https://doi.org/10.1175/JPO-D-14-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., P. R. Gent, and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models? J. Climate, 27, 411425, https://doi.org/10.1175/JCLI-D-12-00759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2020: Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 45954637, https://doi.org/10.5194/gmd-13-4595-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., P. Gaube, M. G. Schlax, J. J. Early, and R. M. Samelson, 2011: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 328332, https://doi.org/10.1126/science.1208897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M., and D. R. Watts, 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, https://doi.org/10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deppenmeier, A.-L., F. O. Bryan, W. S. Kessler, and L. Thompson, 2021: Modulation of cross-isothermal velocities with ENSO in the tropical Pacific cold tongue. J. Phys. Oceanogr., 51, 15591574, https://doi.org/10.1175/JPO-D-20-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, https://doi.org/10.1175/2010JPO4353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, A., G. Gawarkiewicz, E. N. S. Silva, M. Monim, and J. Clark, 2019: An observed regime shift in the formation of warm core rings from the Gulf Stream. Sci. Rep., 9, 12319, https://doi.org/10.1038/s41598-019-48661-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., and S. Bishop, 2022: Surface divergent eddy heat fluxes and their impacts on mixed layer eddy-mean flow interactions. J. Adv. Model. Earth Syst., 14, e2021MS002863, https://doi.org/10.1029/2021MS002863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, https://doi.org/10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, B. K., F. O. Bryan, S. A. Grodsky, and J. A. Carton, 2016: Climatological annual cycle of the salinity budgets of the subtropical maxima. J. Phys. Oceanogr., 46, 29812994, https://doi.org/10.1175/JPO-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, https://doi.org/10.1175/JPO-D-14-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., E. N. Curchitser, and A. Rosati, 2016: Seasonal variability of the Gulf Stream kinetic energy. J. Phys. Oceanogr., 46, 11891207, https://doi.org/10.1175/JPO-D-15-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1992: An equivalent-barotropic mode in the fine resolution Antarctic model. J. Phys. Oceanogr., 22, 13791387, https://doi.org/10.1175/1520-0485(1992)022<1379:AEBMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luecke, C., and Coauthors, 2017: The global mesoscale eddy available potential energy field in models and observations. J. Geophys. Res. Oceans, 122, 91269143, https://doi.org/10.1002/2017JC013136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, https://doi.org/10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, D. G. Wright, and R. Feistel, 2003: Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Oceanic Technol., 20, 730741, https://doi.org/10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and A. Gnanadesikan, 1998: Transient response in a z-level ocean model that resolves topography with partial cells. Mon. Wea. Rev., 126, 32483270, https://doi.org/10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieck, J. K., C. W. Böning, R. J. Greatbatch, and M. Scheinert, 2015: Seasonal variability of eddy kinetic energy in a global high-resolution ocean model. Geophys. Res. Lett., 42, 93799386, https://doi.org/10.1002/2015GL066152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, https://doi.org/10.1002/2014MS000363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Doc. LAUR-10-01853, 140 pp., https://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.

    • Crossref
    • Export Citation
  • Tomita, H., T. Hihara, S. Kako, M. Kubota, and K. Kutsuwada, 2019: An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr., 75, 171194, https://doi.org/10.1007/s10872-018-0493-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchida, T., R. Abernathey, and S. Smith, 2017: Seasonality of eddy kinetic energy in an eddy permitting global climate model. Ocean Modell., 118, 4158, https://doi.org/10.1016/j.ocemod.2017.08.006.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., T. Lee, and L.-L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35, L20601, https://doi.org/10.1029/2008GL035490.

    • Search Google Scholar
    • Export Citation
  • Von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Yang, H., P. Chang, B. Qiu, Q. Zhang, L. Wu, Z. Chen, and H. Wang, 2019: Mesoscale air–sea interaction and its role in eddy energy dissipation in the Kuroshio Extension. J. Climate, 32, 86598676, https://doi.org/10.1175/JCLI-D-19-0155.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., and R. J. Greatbatch, 2006: Inferring the eddy-induced diffusivity for heat in the surface mixed layer using satellite data. Geophys. Res. Lett., 33, L24607, https://doi.org/10.1029/2006GL027875.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J.-D. Kohlmann, 2008: On the seasonal variability of eddy kinetic energy in the Gulf Stream region. Geophys. Res. Lett., 35, L24609, https://doi.org/10.1029/2008GL036412.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 445 437 33
Full Text Views 178 175 8
PDF Downloads 226 223 7

A Global Diagnosis of Eddy Potential Energy Budget in an Eddy-Permitting Ocean Model

Yiming GuoaDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Yiming Guo in
Current site
Google Scholar
PubMed
Close
,
Stuart BishopaDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Stuart Bishop in
Current site
Google Scholar
PubMed
Close
,
Frank BryanbNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Frank Bryan in
Current site
Google Scholar
PubMed
Close
, and
Scott BachmanbNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Scott Bachman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We use an interannually forced version of the Parallel Ocean Program, configured to resolve mesoscale eddies, to close the global eddy potential energy (EPE) budget associated with temperature variability. By closing the EPE budget, we are able to properly investigate the role of diabatic processes in modulating mesoscale energetics in the context of other processes driving eddy–mean flow interactions. A Helmholtz decomposition of the eddy heat flux field into divergent and rotational components is applied to estimate the baroclinic conversion from mean to eddy potential energy. In doing so, an approximate two-way balance between the “divergent” baroclinic conversion and upgradient vertical eddy heat fluxes in the ocean interior is revealed, in accordance with baroclinic instability and the relaxation of isopycnal slopes. However, in the mixed layer, the EPE budget is greatly modulated by diabatic mixing, with air–sea interactions and interior diffusion playing comparable roles. Globally, this accounts for ∼60% of EPE converted to EKE (eddy kinetic energy), with the remainder being dissipated by air–sea interactions and interior mixing. A seasonal composite of baroclinic energy conversions shows that the strongest EPE to EKE conversion occurs during the summer in both hemispheres. The seasonally varying diabatic processes in the upper ocean are further shown to be closely linked to this EPE–EKE conversion seasonality, but with a lead. The peak energy dissipation through vertical mixing occurs ahead of the minimum EKE generation by 1–2 months.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yiming Guo, yguo20@ncsu.edu

Abstract

We use an interannually forced version of the Parallel Ocean Program, configured to resolve mesoscale eddies, to close the global eddy potential energy (EPE) budget associated with temperature variability. By closing the EPE budget, we are able to properly investigate the role of diabatic processes in modulating mesoscale energetics in the context of other processes driving eddy–mean flow interactions. A Helmholtz decomposition of the eddy heat flux field into divergent and rotational components is applied to estimate the baroclinic conversion from mean to eddy potential energy. In doing so, an approximate two-way balance between the “divergent” baroclinic conversion and upgradient vertical eddy heat fluxes in the ocean interior is revealed, in accordance with baroclinic instability and the relaxation of isopycnal slopes. However, in the mixed layer, the EPE budget is greatly modulated by diabatic mixing, with air–sea interactions and interior diffusion playing comparable roles. Globally, this accounts for ∼60% of EPE converted to EKE (eddy kinetic energy), with the remainder being dissipated by air–sea interactions and interior mixing. A seasonal composite of baroclinic energy conversions shows that the strongest EPE to EKE conversion occurs during the summer in both hemispheres. The seasonally varying diabatic processes in the upper ocean are further shown to be closely linked to this EPE–EKE conversion seasonality, but with a lead. The peak energy dissipation through vertical mixing occurs ahead of the minimum EKE generation by 1–2 months.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yiming Guo, yguo20@ncsu.edu
Save