• Artegiani, A., R. Azzolini, and E. Salusti, 1989: On the dense water in the Adriatic Sea. Oceanol. Acta, 12, 151160.

  • Artegiani, A., E. Paschini, A. Russo, D. Bregant, F. Raicich, and N. Pinardi, 1997: The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr., 27, 14921514, https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bensi, M., V. Cardin, and A. Rubino, 2014: Thermohaline variability and mesoscale dynamics observed at the deep-ocean observatory E2M3A in the southern Adriatic Sea. The Mediterranean Sea: Temporal Variability and Spatial Patterns, Geophys. Monogr., Vol. 202, Amer. Geophys. Union, 139155, https://doi.org/10.1002/9781118847572.ch9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blokhina, M. D., and Y. D. Afanasyev, 2003: Baroclinic instability and transient features of mesoscale surface circulation in the Black Sea: Laboratory experiment. J. Geophys. Res., 108, 3322, https://doi.org/10.1029/2003JC001979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosse, A., P. Testor, L. Mortier, L. Prieur, V. Taillandier, F. d’Ortenzio, and L. Coppola, 2015: Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders. J. Geophys. Res. Oceans, 120, 15991622, https://doi.org/10.1002/2014JC010263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosse, A., and Coauthors, 2016: Scales and dynamics of submesoscale coherent vortices formed by deep convection in the northwestern Mediterranean Sea. J. Geophys. Res. Oceans, 121, 77167742, https://doi.org/10.1002/2016JC012144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buljan, M., and M. Zore-Armanda, 1976: Oceanographical properties of the Adriatic Sea. Oceanogr. Mar. Biol., 14, 1198.

  • Cushman-Roisin, B., M. Gacic, P. M. Poulain, and A. Artegiani, Eds., 2001: Physical Oceanography of the Adriatic Sea: Past, Present and Future. Springer, 318 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damien, P. P., A. Bosse, P. Testor, P. Marsaleix, and C. Estournel, 2017: Modeling postconvective submesoscale coherent vortices in the northwestern Mediterranean Sea. J. Geophys. Res. Oceans, 122, 99379961, https://doi.org/10.1002/2016JC012114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1985: Mixed-layer entrainment: A review. Proc. Seventh Symp. on Atmospheric Turbulence and Diffusion, Boulder, CO, Amer. Meteor. Soc., 3942.

    • Search Google Scholar
    • Export Citation
  • Du Plessis, M., S. Swart, I. J. Ansorge, and A. Mahadevan, 2017: Submesoscale processes promote seasonal restratification in the Subantarctic Ocean. J. Geophys. Res. Oceans, 122, 29602975, https://doi.org/10.1002/2016JC012494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Elliott, B. A., and T. B. Sanford, 1986: The subthermocline lens D1. Part II: Kinematics and dynamics. J. Phys. Oceanogr., 16, 549561, https://doi.org/10.1175/1520-0485(1986)016<0549:TSLDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, H. J., R. R. Chen, and D. L. Boyer, 1991: Effects of rotation on convective turbulence. J. Fluid Mech., 228, 513547, https://doi.org/10.1017/S002211209100280X.

    • Search Google Scholar
    • Export Citation
  • Gačić, M., G. Civitarese, S. Miserocchi, V. Cardin, A. Crise, and E. Mauri, 2002: The open-ocean convection in the Southern Adriatic: A controlling mechanism of the spring phytoplankton bloom. Cont. Shelf Res., 22, 18971908, https://doi.org/10.1016/S0278-4343(02)00050-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gascard, J.-C., and R. A. Clarke, 1983: The formation of Labrador Sea Water. Part 2: Mesoscale and smaller scale processes. J. Phys. Oceanogr., 13, 17791797, https://doi.org/10.1175/1520-0485(1983)013<1779:TFOLSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1982: Weddel deep water variability. J. Mar. Res., 40, 199217.

  • Grilli, F., and N. Pinardi, 1998: The computation of Rossby radii of deformation for the Mediterranean Sea. MTP News, No. 6, 4.

  • Helfrich, K. R., 1994: Thermals with background rotation and stratification. J. Fluid Mech., 259, 265280, https://doi.org/10.1017/S0022112094000121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houpert, L., and Coauthors, 2016: Observations of open‐ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007‐2013 period. J. Geophys. Res. Oceans, 121, 81398171, https://doi.org/10.1002/2016JC011857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., J. R. Taylor, and M. J. Coates, 1995: Convectively driven mixed layer growth in a rotating, stratified fluid. Deep-Sea Res. I, 42, 331349, https://doi.org/10.1016/0967-0637(94)00039-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, H., and J. Marshall, 1993: Convection with rotation in a neutral ocean: A study of open-ocean deep convection. J. Phys. Oceanogr., 23, 10091039, https://doi.org/10.1175/1520-0485(1993)023<1009:CWRIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, H., and J. Marshall, 1997: Restratification after deep convection. J. Phys. Oceanogr., 27, 22762287, https://doi.org/10.1175/1520-0485(1997)027<2276:RADC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1976: The mixing and spreading phases of MEDOC. I. Prog. Oceanogr., 7, 5990, https://doi.org/10.1016/0079-6611(76)90005-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1979: On “chimney” formations in the ocean. J. Phys. Oceanogr., 9, 531554, https://doi.org/10.1175/1520-0485(1979)009<0531:OFITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokkini, Z., E. Mauri, R. Gerin, P. M. Poulain, S. Simoncelli, and G. Notarstefano, 2020: On the salinity structure in the South Adriatic as derived from float and glider observations in 2013–2016. Deep-Sea Res. II, 171, 104625, https://doi.org/10.1016/j.dsr2.2019.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovačević, V., M. Gacić, and P. M. Poulain, 1999: Eulerian current measurements in the Strait of Otranto and in the Southern Adriatic. J. Mar. Syst., 20, 255278, https://doi.org/10.1016/S0924-7963(98)00086-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and F. A. Schott, 1991: Hydrographic structure of the convection regime in the Gulf of Lions: Winter 1987. J. Phys. Oceanogr., 21, 575598, https://doi.org/10.1175/1520-0485(1991)021<0575:HSOTCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Marshall, 1993: A heton model of the spreading phase of open-ocean deep convection. J. Phys. Oceanogr., 23, 10401056, https://doi.org/10.1175/1520-0485(1993)023<1040:AHMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., J. Mc Williams, and J. Gao, 1998: Localization of deep ocean convection by a geostrophic eddy. J. Phys. Oceanogr., 28, 944970, https://doi.org/10.1175/1520-0485(1998)028<0944:LODOCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., and P. B. Rhines, 2002: Coherent eddies in the Labrador Sea observed from a mooring. J. Phys. Oceanogr., 32, 585598, https://doi.org/10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, M. Visbeck, R. Davis, J. R. Lazier, F. Schott, and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/95. J. Phys. Oceanogr., 29, 20652098, https://doi.org/10.1175/1520-0485(1999)029<2065:ODCITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malanotte-Rizzoli, P., and Coauthors, 1997: A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM- Phase I. Prog. Oceanogr., 39, 153204, https://doi.org/10.1016/S0079-6611(97)00013-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manca, B., and D. Bregant, 1998: Dense water formation and circulation in the Southern Adriatic Sea during winter 1996. Rapp. P.-V. Reun. Comm. Int. Explor. Sci. Mer Mediterr., 35, 176177.

    • Search Google Scholar
    • Export Citation
  • Manca, B., and A. Giorgetti, 1998: Thermohaline properties and circulation patterns in the Southern Adriatic Sea from May 1995 to 12 February 1996. Atti del 12° Congresso dell’Associazione Italiana di Oceanologia e Limnologia, Vol. II, M. Piccazzo, Ed., Associazione Italiana di Oceanologia e Limnologia, 399414.

    • Search Google Scholar
    • Export Citation
  • Manca, B. B., V. Kovaĉević, M. Gaĉić, and D. Viezzoli, 2002: Dense water formation in the Southern Adriatic Sea and spreading into the Ionian Sea in the period 1997–1999. J. Mar. Syst., 33–34, 133154, https://doi.org/10.1016/S0924-7963(02)00056-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantziafou, A., and A. Lascaratos, 2004: An eddy resolving numerical study of the general circulation and deep-water formation in the Adriatic Sea. Deep-Sea Res. I, 51, 921952, https://doi.org/10.1016/j.dsr.2004.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantziafou, A., and A. Lascaratos, 2008: Deep-water formation in the Adriatic Sea: Interannual simulations for the years 1979–1999. Deep-Sea Res. I, 55, 14031427, https://doi.org/10.1016/j.dsr.2008.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margirier, F., and Coauthors, 2017: Characterization of convective plumes associated with oceanic deep convection in the northwestern Mediterranean from high‐resolution in situ data collected by gliders. J. Geophys. Res. Oceans, 122, 98149826, https://doi.org/10.1002/2016JC012633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection, observations, theory, and models. Rev. Geophys., 37, 164, https://doi.org/10.1029/98RG02739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. A. Whitehead, and T. Yates, 1994: Laboratory and numerical experiments in oceanic convection. Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, P. Malanotte-Rizzoli and A. Robinson, Eds., Springer, 173201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., and S. Narimousa, 1992: Rotating convection. Interactive Dynamics of Convection and Solidification, S. H. Davis et al., Eds., NATO Science Series E, Vol. 219, Springer, 261263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., and S. Narimousa, 1994: Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J. Phys. Oceanogr., 24, 865887, https://doi.org/10.1175/1520-0485(1994)024<0865:UTCIAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merckelbach, L., D. Smeed, and G. Griffiths, 2010: Vertical water velocities from underwater gliders. J. Atmos. Oceanic Technol., 27, 547563, https://doi.org/10.1175/2009JTECHO710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertens, C., 2000: Open-ocean convection in the Labrador and Greenland Seas: Plume scales and interannual variability. Ph.D. dissertation, Faculty of Mathematics and Natural Sciences, Kiel University, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Mertens, C., and F. Schott, 1998: Interannual variability of deep-water formation in the northwestern Mediterranean. J. Phys. Oceanogr., 28, 14101424, https://doi.org/10.1175/1520-0485(1998)028<1410:IVODWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nardelli, B. B., and E. Salusti, 2000: On dense water formation criteria and their application to the Mediterranean Sea. Deep-Sea Res. I, 47, 193221, https://doi.org/10.1016/S0967-0637(99)00054-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oddo, P., N. Pinardi, and M. Zavatarelli, 2005: A numerical study of the interannual variability of the Adriatic Sea (2000–2002). Sci. Total Environ., 353, 3956, https://doi.org/10.1016/j.scitotenv.2005.09.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, I. M., V. I. Zats, V. G. Krivosheya, and A. I. Udodov, 1985: Formation of deep Eastern Mediterranean waters in the Adriatic Sea. Oceanology, 25, 704707.

    • Search Google Scholar
    • Export Citation
  • Penven, P., I. Halo, S. Pous, and L. Marie, 2014: Cyclogeostrophic balance in the Mozambique Channel. J. Geophys. Res. Oceans, 119, 10541067, https://doi.org/10.1002/2013JC009528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1966: On turbulent convection currents and the circulation of the Red Sea. Deep-Sea Res. Oceanogr. Abstr., 13, 11491160, https://doi.org/10.1016/0011-7471(66)90706-6.

    • Search Google Scholar
    • Export Citation
  • Pollak, M. I., 1951: The sources of the deep water in the eastern Mediterranean. J. Mar. Res., 10, 128152.

  • Poulain, P.-M., 2001: Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. J. Mar. Syst., 29, 332, https://doi.org/10.1016/S0924-7963(01)00007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., and B. Cushman-Roisin, 2001: Circulation. Physical Oceanography of the Adriatic Sea Past, Present and Future, B. Cushman-Roisin et al., Eds., Springer, 312 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., M. Menna, and E. Mauri, 2012: Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr., 42, 973990, https://doi.org/10.1175/JPO-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Querin, S., G. Cossarini, and C. Solidoro, 2013: Simulating the formation and fate of dense water in a midlatitude marginal sea during normal and warm winter conditions. J. Geophys. Res. Oceans, 118, 885900, https://doi.org/10.1002/jgrc.20092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., 1973: The instability of a baroclinic vortex. J. Phys. Oceanogr., 3, 6165, https://doi.org/10.1175/1520-0485(1973)003<0061:TIOABV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., W. Roether, H. Oster, H. G. Junghans, M. Hausmann, and A. Michelato, 1991: Chlorofluoromethane and oxygen in the Eastern Mediterranean. Deep-Sea Res., 38, 15311551, https://doi.org/10.1016/0198-0149(91)90088-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F., and K. D. Leaman, 1991: Observations with moored acoustic Doppler current profilers in the convection regime in the Golfe du Lion. J. Phys. Oceanogr., 21, 558574, https://doi.org/10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Visbeck, and J. Fischer, 1993: Observations of vertical currents and convection in the central Greenland Sea during the winter of 1988–1989. J. Geophys. Res., 98, 14 40114 421, https://doi.org/10.1029/93JC00658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Visbeck, U. Send, J. Fischer, L. Stramma, and Y. Desaubies, 1996: Observations of deep convection in the Gulf of Lions, northern Mediterranean, during the winter of 1991/92. J. Phys. Oceanogr., 26, 505524, https://doi.org/10.1175/1520-0485(1996)026<0505:OODCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1972: Deep winter-time convection in the western Mediterranean Sea. Studies in Physical Oceanography: A Tribute to Georg Wust on his 80th Birthday, A. L. Gordon, Ed., Vol. 2, Gordon and Breach, 207218.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., A. Voorhis, and D. Webb, 1971: Submarine clouds in the deep ocean: Surface cooling during late winter in the northwestern Mediterranean Sea causes large masses of water to sink to great depths. Amer. Sci., 59, 716722.

    • Search Google Scholar
    • Export Citation
  • Swart, S., S. J. Thomalla, and P. M. S. Monteiro, 2015: The seasonal cycle of mixed layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: A high-resolution glider experiment. J. Mar. Syst., 147, 103115, https://doi.org/10.1016/j.jmarsys.2014.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testor, P., and Coauthors, 2019: OceanGliders: A component of the integrated GOOS. Front. Mar. Sci., 6, 422, https://doi.org/10.3389/fmars.2019.00422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomalla, S. J., M. Racault, S. Swart, and P. M. S. Monteiro, 2015: High-resolution view of the spring bloom initiation and net community production in the Subantarctic Southern Ocean using glider data. ICES J. Mar. Sci., 72, 19992020, https://doi.org/10.1093/icesjms/fsv105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, and R. E. Davis, 2009: Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. J. Geophys. Res., 114, C06001, https://doi.org/10.1029/2008JC005086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Visbeck, M., J. Marshall, and H. Jones, 1996: Dynamics of isolated convective regions in the ocean. J. Phys. Oceanogr., 26, 17211734, https://doi.org/10.1175/1520-0485(1996)026<1721:DOICRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., J. Marshall, and G. E. Hufford, 1996: Localized convection in rotating stratified fluid. J. Geophys. Res., 101, 25 70525 721, https://doi.org/10.1029/96JC02322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wüst, G., 1961: On the vertical circulation of the Mediterranean Sea. J. Geophys. Res., 66, 32613271, https://doi.org/10.1029/JZ066i010p03261.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 259 257 26
Full Text Views 147 146 9
PDF Downloads 164 162 9

New Insights on the Formation and Breaking Mechanism of Convective Cyclonic Cones in the South Adriatic Pit during Winter 2018

A. PirroaNational Institute of Oceanography and Applied Geophysics (OGS), Sgonico, Italy

Search for other papers by A. Pirro in
Current site
Google Scholar
PubMed
Close
,
E. MauriaNational Institute of Oceanography and Applied Geophysics (OGS), Sgonico, Italy

Search for other papers by E. Mauri in
Current site
Google Scholar
PubMed
Close
,
R. GerinaNational Institute of Oceanography and Applied Geophysics (OGS), Sgonico, Italy

Search for other papers by R. Gerin in
Current site
Google Scholar
PubMed
Close
,
R. MartellucciaNational Institute of Oceanography and Applied Geophysics (OGS), Sgonico, Italy

Search for other papers by R. Martellucci in
Current site
Google Scholar
PubMed
Close
,
P. ZuppelliaNational Institute of Oceanography and Applied Geophysics (OGS), Sgonico, Italy

Search for other papers by P. Zuppelli in
Current site
Google Scholar
PubMed
Close
, and
P. M. PoulainaNational Institute of Oceanography and Applied Geophysics (OGS), Sgonico, Italy

Search for other papers by P. M. Poulain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The deepwater formation in the northern part of the South Adriatic Pit (Mediterranean Sea) is investigated using a unique oceanographic dataset. In situ data collected by a glider along the Bari–Dubrovnik transect captured the mixing and the spreading/restratification phase of the water column in winter 2018. After a period of about 2 weeks from the beginning of the mixing phase, a homogeneous convective area of ∼300-m depth breaks up due to the baroclinic instability process in cyclonic cones made of geostrophically adjusted fluid. The base of these cones is located at the bottom of the mixed layer, and they extend up to the theoretical critical depth Zc. These cones, with a diameter on the order of internal Rossby radius of deformation (∼6 km), populate the ∼110-km-wide convective site, develop beneath it, and have a short lifetime of weeks. Later on, the cones extend deeper and intrusion from deep layers makes their inner core denser and colder. These observed features differ from the long-lived cyclonic eddies sampled in other ocean sites and formed at the periphery of the convective area in a postconvection period. So far, to the best of our knowledge, only theoretical studies, laboratory experiments, and model simulations have been able to predict and describe our observations, and no other in situ information has yet been provided.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annunziata Pirro, apirro@ogs.it

Abstract

The deepwater formation in the northern part of the South Adriatic Pit (Mediterranean Sea) is investigated using a unique oceanographic dataset. In situ data collected by a glider along the Bari–Dubrovnik transect captured the mixing and the spreading/restratification phase of the water column in winter 2018. After a period of about 2 weeks from the beginning of the mixing phase, a homogeneous convective area of ∼300-m depth breaks up due to the baroclinic instability process in cyclonic cones made of geostrophically adjusted fluid. The base of these cones is located at the bottom of the mixed layer, and they extend up to the theoretical critical depth Zc. These cones, with a diameter on the order of internal Rossby radius of deformation (∼6 km), populate the ∼110-km-wide convective site, develop beneath it, and have a short lifetime of weeks. Later on, the cones extend deeper and intrusion from deep layers makes their inner core denser and colder. These observed features differ from the long-lived cyclonic eddies sampled in other ocean sites and formed at the periphery of the convective area in a postconvection period. So far, to the best of our knowledge, only theoretical studies, laboratory experiments, and model simulations have been able to predict and describe our observations, and no other in situ information has yet been provided.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annunziata Pirro, apirro@ogs.it
Save