• Abernathey, R., and D. Ferreira, 2015: Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophys. Res. Lett., 42, 10 35710 365, https://doi.org/10.1002/2015GL066238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, https://doi.org/10.1016/0924-7963(94)00034-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, M., R. Tulloch, J. Marshall, and R. Ferrari, 2014: Rationalizing the spatial distribution of mesoscale eddy diffusivity in terms of mixing length theory. J. Phys. Oceanogr., 44, 15231540, https://doi.org/10.1175/JPO-D-13-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J., and I. Kamenkovich, 2008: Isolating the role of mesoscale eddies in mixing of a passive tracer in an eddy resolving model. J. Geophys. Res., 113, C05021, https://doi.org/10.1029/2007JC004510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., C. Eden, and D. Olbers, 2011: A dynamically consistent closure for zonally averaged ocean models. J. Phys. Oceanogr., 41, 22422258, https://doi.org/10.1175/JPO-D-11-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., C. Wortham, E. Kunze, and W. B. Owens, 2015: Eddy stirring and horizontal diffusivity from Argo float observations: Geographic and depth variability. Geophys. Res. Lett., 42, 39893997, https://doi.org/10.1002/2015GL063827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. C. Mc Williams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate, 8, 29672987, https://doi.org/10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 2016: Closing the energy cycle in an ocean model. Ocean Modell., 101, 3042, https://doi.org/10.1016/j.ocemod.2016.02.005.

  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239, https://doi.org/10.1016/j.ocemod.2007.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, https://doi.org/10.1016/j.ocemod.2011.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy mixing across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, https://doi.org/10.1029/JC095iC09p16179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., S. M. Griffies, and B. L. Samuels, 2007: Effects in a climate model of slope tapering in neutral physics schemes. Ocean Modell., 16, 116, https://doi.org/10.1016/j.ocemod.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015a: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, https://doi.org/10.1002/2015GL064100.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015b: Exploring the isopycnal mixing and Helium–heat paradoxes in a suite of Earth system models. Ocean Sci., 11, 591605, https://doi.org/10.5194/os-11-591-2015.

  • Greatbatch, R. J., and J. Lu, 2003: Reconciling the Stommel box model with the Stommel–Arons model: A possible role for Southern Hemisphere wind forcing? J. Phys. Oceanogr., 33, 16181632, https://doi.org/10.1175/2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griesel, A., and M. A. Morales Maqueda, 2006: The relation of meridional pressure gradients to North Atlantic Deep Water volume transport in an ocean general circulation model. Climate Dyn., 26, 781799, https://doi.org/10.1007/s00382-006-0122-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griesel, A., S. T. Gille, J. Sprintall, J. L. McClean, J. H. LaCasce, and M. E. Maltrud, 2010: Isopycnal diffusivities in the Antarctic Circumpolar Current inferred from Lagrangian floats in an eddying model. J. Geophys. Res., 115, C06006, https://doi.org/10.1029/2009JC005821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griesel, A., J. L. McClean, S. T. Gille, J. Sprintall, and C. Eden, 2014: Eulerian and Lagrangian isopycnal eddy diffusivities in the Southern Ocean of an eddying model. J. Phys. Oceanogr., 44, 644661, https://doi.org/10.1175/JPO-D-13-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griesel, A., C. Eden, N. Koopmann, and E. Yulaeva, 2015: Comparing isopycnal eddy diffusivities in the Southern Ocean with predictions from linear theory. Ocean Modell., 94, 3345, https://doi.org/10.1016/j.ocemod.2015.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., R. P. Abernathey, and A. Klocker, 2016: Water mass transformation by cabbeling and thermobaricity. Geophys. Res. Lett., 43, 10 83510 845, https://doi.org/10.1002/2016GL070860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., B. M. Sloyan, J. D. Zika, and T. J. McDougall, 2017: Mixing inferred from an ocean climatology and surface fluxes. J. Phys. Oceanogr., 47, 667687, https://doi.org/10.1175/JPO-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R. W., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern hemisphere overturning: Results from the Modelling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, https://doi.org/10.1175/JPO2980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hofmann, M., and M. A. Morales Maqueda, 2011: The response of Southern Ocean eddies to increased midlatitude westerlies: A non-eddy resolving model study. Geophys. Res. Lett., 38, L03605, https://doi.org/10.1029/2010GL045972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, UNESCO, 196 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

    • Crossref
    • Export Citation
  • Jochum, M., and C. Eden, 2015: The connection between Southern Ocean winds, the Atlantic Meridional Overturning Circulation, and Indo-Pacific upwelling. J. Climate, 28, 92509257, https://doi.org/10.1175/JCLI-D-15-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and R. P. Abernathey, 2019: Isopycnal mixing controls deep ocean ventilation. Geophys. Res. Lett., 46, 13 14413 151, https://doi.org/10.1029/2019GL085208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., and E. Sarachik, 2004: Mechanisms controlling the sensitivity of the Atlantic thermohaline circulation to the parameterization of eddy transports in ocean GCMs. J. Phys. Oceanogr., 34, 16281647, https://doi.org/10.1175/1520-0485(2004)034<1628:MCTSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., Z. Garraffo, R. Pennel, and R. A. Fine, 2017: Importance of mesoscale eddies and mean circulation in ventilation of the Southern Ocean. J. Geophys. Res. Oceans, 122, 27242741, https://doi.org/10.1002/2016JC012292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karsten, R., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 3954, https://doi.org/10.1175/1520-0485(2002)032<0039:TROETI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., R. S. Smith, Z. Wang, and J. M. Gregory, 2012: The influence of eddy parameterizations on the transport of the Antarctic Circumpolar Current in coupled climate models. Ocean Modell., 52–53, 18, https://doi.org/10.1016/j.ocemod.2012.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., J. M. Gregory, and L. C. Shaffrey, 2015: A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component. Climate Dyn., 45, 32053226, https://doi.org/10.1007/s00382-015-2534-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, https://doi.org/10.1029/98JC01738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., S. Groeskamp, and S. M. Griffies, 2017: Comment on Tailleux, R. Neutrality versus Materiality: A thermodynamic theory of neutral surfaces. Fluids 2016, 1, 32. Fluids, 2, 19, https://doi.org/10.3390/fluids2020019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2013: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 515, https://doi.org/10.1029/177GM03.

    • Crossref
    • Export Citation
  • Nycander, J., M. Hieronymus, and F. Roquet, 2015: The nonlinear equation of state of sea water and the global water mass distribution. Geophys. Res. Lett., 42, 77147721, https://doi.org/10.1002/2015GL065525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, https://doi.org/10.1175/JPO-D-12-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 703 pp.

    • Crossref
    • Export Citation
  • Pradal, M.-A., and A. Gnanadesikan, 2014: How does the Redi parameter for mesoscale mixing impact global climate in an Earth system model? J. Adv. Model. Earth Syst., 6, 586601, https://doi.org/10.1002/2013MS000273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragen, S., M.-A. Pradal, and A. Gnanadesikan, 2020: The impact of parameterized lateral mixing on the Antarctic Circumpolar Current in a coupled climate model. J. Phys. Oceanogr., 50, 965982, https://doi.org/10.1175/JPO-D-19-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2016: Horizontal mixing in the Southern Ocean from Argo float trajectories. J. Geophys. Res. Oceans, 121, 55705586, https://doi.org/10.1002/2015JC011440.

    • Crossref
    • Export Citation
  • Roquet, F., G. Madec, L. Brodeau, and J. Nycander, 2015: Defining a simplified yet “realistic” equation of state for seawater. J. Phys. Oceanogr., 45, 25642579, https://doi.org/10.1175/JPO-D-15-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2011: Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: Effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep-Sea Res. II, 58, 19271943, https://doi.org/10.1016/j.dsr2.2010.10.070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., and M. H. England, 2009: The control of polar haloclines by along-isopycnal diffusion in climate models. J. Climate, 22, 486498, https://doi.org/10.1175/2008JCLI2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., M. Bates, and M. H. England, 2006: Can isopycnal mixing control the stability of the thermohaline circulation in ocean climate models? J. Climate, 19, 56375651, https://doi.org/10.1175/JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K., and J. Marshall, 2009: Evidence for deep eddy mixing in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, https://doi.org/10.1175/2008JPO3880.1.

    • Search Google Scholar
    • Export Citation
  • Spence, P., O. A. Saenko, M. Eby, and A. J. Weaver, 2009: The Southern Ocean Overturning: Parameterized versus permitted eddies. J. Phys. Oceanogr., 39, 16341651, https://doi.org/10.1175/2009JPO4120.1.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1996: An inconsistency between two classical models of the ocean buoyancy driven circulation. Tellus, 48A, 477481, https://doi.org/10.3402/tellusa.v48i3.12073.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and Coauthors, 2014: Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr., 44, 25932616, https://doi.org/10.1175/JPO-D-13-0120.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 964 pp.

  • Viebahn, J., and C. Eden, 2010: Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modell., 34, 150165, https://doi.org/10.1016/j.ocemod.2010.05.005.

    • Search Google Scholar
    • Export Citation
  • Vollmer, L., and C. Eden, 2013: A global map of meso-scale eddy diffusivities based on linear stability analysis. Ocean Modell., 72, 198209, https://doi.org/10.1016/j.ocemod.2013.09.006.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., D. Lyzhkov, and N. Kuzmina, 2014: Drifter-derived estimates of lateral eddy diffusivity in the world ocean with emphasis on the Indian Ocean and problems of parameterisation. Deep-Sea Res. I, 83, 111, https://doi.org/10.1016/j.dsr.2013.09.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 746 746 17
Full Text Views 230 230 25
PDF Downloads 287 287 25

Changes in Global Ocean Circulation due to Isopycnal Diffusion

Ashwita ChoukseyaInstitut für Meereskunde, Universität Hamburg, Hamburg, Germany
bUniv. Brest, CNRS, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France

Search for other papers by Ashwita Chouksey in
Current site
Google Scholar
PubMed
Close
,
Alexa GrieselaInstitut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Alexa Griesel in
Current site
Google Scholar
PubMed
Close
,
Manita ChoukseyaInstitut für Meereskunde, Universität Hamburg, Hamburg, Germany
cInstitut für Umweltphysik and MARUM, Universität Bremen, Bremen, Germany

Search for other papers by Manita Chouksey in
Current site
Google Scholar
PubMed
Close
, and
Carsten EdenaInstitut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We investigate changes in the ocean circulation due to the variation of isopycnal diffusivity (κiso) in a global non-eddy-resolving model. Although isopycnal diffusion is thought to have minor effects on interior density gradients, the model circulation shows a surprisingly large sensitivity to the changes: with increasing κiso, the strength of the Atlantic residual overturning circulation (AMOC) and the Antarctic Circumpolar Current (ACC) transport weaken. At high latitudes, the isopycnal diffusion diffuses temperature and salinity upward and poleward, and at low latitudes downward close to the surface. Increasing isopycnal diffusivity increases the meridional isopycnal fluxes whose meridional gradient is equatorward, hence leading to a negative contribution to the flux divergence in the tracer equations and predominant cooling and freshening equatorward of 40°. The effect on temperature overcompensates the countering effect of salinity diffusion, such that the meridional density differences decrease, along with which ACC and AMOC decrease. We diagnose the adjustment process to the new equilibrium with increased isopycnal diffusion to assess how the other terms in the tracer equations react to the increased κiso. It reveals that around ±40° latitude, the cooling induced by the increased isopycnal flux is only partly compensated by warming by advection, explaining the net cooling. Overall, the results emphasize the importance of isopycnal diffusion on ocean circulation and dynamics, and hence the necessity of its careful representation in models.

Significance Statement

The effect of mixing by mesoscale eddies, represented as diffusion along surfaces of constant density in models, on the ocean circulation is not well understood. Here, we show that an increase in the eddy diffusivity in different setups of a global ocean model leads to a surprisingly large change of the ocean circulation. The strength of the Atlantic overturning circulation and the Antarctic Circumpolar Current decrease. We find that the interior ocean becomes cooler and fresher and that the temperature effect on density dominates over salinity, resulting in a decrease in the density gradients. Our results point out the importance of eddy diffusion on ocean circulation, and hence the necessity of its correct representation in ocean and climate models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashwita Chouksey, ashwita.chouksey@univ-brest.fr

Abstract

We investigate changes in the ocean circulation due to the variation of isopycnal diffusivity (κiso) in a global non-eddy-resolving model. Although isopycnal diffusion is thought to have minor effects on interior density gradients, the model circulation shows a surprisingly large sensitivity to the changes: with increasing κiso, the strength of the Atlantic residual overturning circulation (AMOC) and the Antarctic Circumpolar Current (ACC) transport weaken. At high latitudes, the isopycnal diffusion diffuses temperature and salinity upward and poleward, and at low latitudes downward close to the surface. Increasing isopycnal diffusivity increases the meridional isopycnal fluxes whose meridional gradient is equatorward, hence leading to a negative contribution to the flux divergence in the tracer equations and predominant cooling and freshening equatorward of 40°. The effect on temperature overcompensates the countering effect of salinity diffusion, such that the meridional density differences decrease, along with which ACC and AMOC decrease. We diagnose the adjustment process to the new equilibrium with increased isopycnal diffusion to assess how the other terms in the tracer equations react to the increased κiso. It reveals that around ±40° latitude, the cooling induced by the increased isopycnal flux is only partly compensated by warming by advection, explaining the net cooling. Overall, the results emphasize the importance of isopycnal diffusion on ocean circulation and dynamics, and hence the necessity of its careful representation in models.

Significance Statement

The effect of mixing by mesoscale eddies, represented as diffusion along surfaces of constant density in models, on the ocean circulation is not well understood. Here, we show that an increase in the eddy diffusivity in different setups of a global ocean model leads to a surprisingly large change of the ocean circulation. The strength of the Atlantic overturning circulation and the Antarctic Circumpolar Current decrease. We find that the interior ocean becomes cooler and fresher and that the temperature effect on density dominates over salinity, resulting in a decrease in the density gradients. Our results point out the importance of eddy diffusion on ocean circulation, and hence the necessity of its correct representation in ocean and climate models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashwita Chouksey, ashwita.chouksey@univ-brest.fr
Save