• Atherton, T. J., and D. J. Kerbyson, 1993: The coherent circle Hough transform. Proc. 4th British Machine Vision Conf., Surrey, United Kingdom, British Machine Vision Association, 269278, https://doi.org/10.5244/C.7.27.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atherton, T. J., and D. J. Kerbyson, 1999: Size invariant circle detection. Image Vis. Comput., 17, 795803, https://doi.org/10.1016/S0262-8856(98)00160-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babanin, A., D. Chalikov, I. Young, and I. Savelyev, 2007: Predicting the breaking onset of surface water waves. Geophys. Res. Lett., 34, L07605, https://doi.org/10.1029/2006GL029135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., X. Barthelemy, F. Fedele, M. Allis, A. Benetazzo, F. Dias, and W. L. Peirson, 2014: Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett., 112, 114502, https://doi.org/10.1103/PhysRevLett.112.114502.

    • Search Google Scholar
    • Export Citation
  • Benilov, A., and B. Filyushkin, 1970: Application of methods of linear filtration to an analysis of fluctuations in the surface layer of the sea. Izv., Atmos. Ocean. Phys., 6, 810819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D., and A. Woodcock, 1957: Bubble formation and modification in the sea and its meteorological Significance. Tellus, 9, 145158, https://doi.org/10.3402/tellusa.v9i2.9094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bricker, J. D., and S. G. Monismith, 2007: Spectral wave-turbulence decomposition. J. Atmos. Oceanic Technol., 24, 14791487, https://doi.org/10.1175/JTECH2066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brumer, S. E., C. J. Zappa, B. W. Blomquist, C. W. Fairall, A. Cifuentes-Lorenzen, J. B. Edson, I. M. Brooks, and B. J. Huebert, 2017: Wave-related Reynolds number parameterizations of CO2and DMS transfer velocities. Geophys. Res. Lett., 44, 98659875, https://doi.org/10.1002/2017GL074979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2017: Airflow measurements at a wavy air–water interface using PIV and LIF. Exp. Fluids, 58, 161, https://doi.org/10.1007/s00348-017-2439-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., M. D. Stokes, and G. B. Deane, 2014: The effect of water temperature on air entrainment, bubble plumes, and surface foam in a laboratory breaking-wave analog. J. Geophys. Res. Oceans, 119, 74637482, https://doi.org/10.1002/2014JC010351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, W., J. W. Fitzgerald, E. C. Monahan, and Q. Wang, 1993: Measurement of the sound produced by a tipping trough with fresh and salt water. J. Acoust. Soc. Amer., 93, 31783192, https://doi.org/10.1121/1.405702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassar, N., B. A. Barnett, M. L. Bender, J. Kaiser, R. C. Hamme, and B. Tilbrook, 2009: Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry. Anal. Chem., 81, 18551864, https://doi.org/10.1021/ac802300u.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caulliez, G., 2002: Self-similarity of near-breaking short gravity wind waves. Phys. Fluids, 14, 29172920, https://doi.org/10.1063/1.1487380.

  • Curcic, M., and B. K. Haus, 2020: Revised estimates of ocean surface drag in strong winds. Geophys. Res. Lett., 47, e2020GL087647, https://doi.org/10.1029/2020GL087647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deane, G. B., 1997: Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Amer., 102, 26712689, https://doi.org/10.1121/1.420321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deane, G. B., and M. D. Stokes, 1999: Air entrainment processes and bubble size distributions in the surf zone. J. Phys. Oceanogr., 29, 13931403, https://doi.org/10.1175/1520-0485(1999)029<1393:aepabs>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deane, G. B., and M. D. Stokes, 2002: Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418, 839844, https://doi.org/10.1038/nature00967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deane, G. B., M. D. Stokes, and A. H. Callaghan, 2016: The saturation of fluid turbulence in breaking laboratory waves and implications for whitecaps. J. Phys. Oceanogr., 46, 975992, https://doi.org/10.1175/JPO-D-14-0187.1.

    • Search Google Scholar
    • Export Citation
  • Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc., B39, 122, https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc., A315, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and A. K. Magnusson, 1996: Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr., 26, 19011914, https://doi.org/10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, https://doi.org/10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsayed, M. A., 2008: Application of continuous wavelet analysis in distinguishing breaking and nonbreaking waves in the wind-wave time series. J. Coastal Res., 24, 273277, https://doi.org/10.2112/05-0443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and S. E. Larsen, 1986: Inertial-dissipation methods and turbulent fluxes at the air-ocean interface. Bound.-Layer Meteor., 34, 287301, https://doi.org/10.1007/BF00122383.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., 2010: Breaking waves and near-surface turbulence. Encyclopedia of Ocean Sciences, Elsevier, 431438, https://doi.org/10.1016/B978-012374473-9.00641-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 10671086, https://doi.org/10.1175/1520-0485(2004)034<1067:NTITPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goring, D., and V. Nikora, 2002: Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng., 128, 117126, https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and P. P. Sullivan, 2015: Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr., 45, 868883, https://doi.org/10.1175/JPO-D-14-0116.1.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Dtsch. Hydrogr. Z., 8 (12), 195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1955: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J., 1, 289295, https://doi.org/10.1002/aic.690010303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., and T. H. C. Herbers, 1986: Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr., 16, 290297, https://doi.org/10.1175/1520-0485(1986)016<0290:SOBWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., S. R. Long, M. A. Donelan, Y. Yuan, and J. Lai, 1992: The local properties of ocean surface waves by the phase-time method. Geophys. Res. Lett., 19, 685688, https://doi.org/10.1029/92GL00670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. Xu, and J. Wu, 1989: Breaking of wind-generated waves: Measurements and characteristics. J. Fluid Mech., 202, 177200, https://doi.org/10.1017/S002211208900114X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Y.-K. Poon, and J. Wu, 1991: Temperature effects on generation and entrainment of bubbles induced by a water jet. J. Phys. Oceanogr., 21, 16021605, https://doi.org/10.1175/1520-0485(1991)021<1602:TEOGAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1924: On the formation of waves by wind. Proc. Roy. Soc., A107, 189206, https://doi.org/10.1098/rspa.1925.0015.

  • Jeffreys, H., 1925: On the formation of waves by wind, II. Proc. Roy. Soc., A110, 341347, https://doi.org/10.1098/rspa.1926.0014.

  • Jimenez, J., A. A. Wray, P. G. Saffman, and R. S. Rogallo, 1993: The structure of intense vorticity in isotropic turbulence. J. Fluid Mech., 255, 6590, https://doi.org/10.1017/S0022112093002393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, B. D., and R. C. Cooke, 1979: Bubble populations and spectra in coastal waters: A photographic approach. J. Geophys. Res., 84, 3761, https://doi.org/10.1029/JC084iC07p03761.

    • Search Google Scholar
    • Export Citation
  • Kinjo, L., 2019: Quantifying air-sea gas exchange at high wind speeds using noble gas measurements: Insights from the SUSTAIN wind-wave tank. Honors thesis, Dept. of Chemistry, Wellesley College, 8 pp., https://repository.wellesley.edu/object/ir901.

    • Crossref
    • Export Citation
  • Kinsman, B., 1965: Wind Waves, Their Generation and Propagation on the Ocean Surface. Prentice Hall, 676 pp.

  • Koga, M., 1982: Bubble entrainment in breaking wind waves. Tellus, 34, 481489, https://doi.org/10.3402/tellusa.v34i5.10833.

  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. Roy. Soc. London, A434, 913, https://doi.org/10.1098/rspa.1991.0075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krall, K. E., A. W. Smith, N. Takagaki, and B. Jaehne, 2019: Air–sea gas exchange at wind speeds up to 85 m s−1. Ocean Sci., 15, 17831799, https://doi.org/10.5194/os-15-1783-2019.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, T., and J. Wright, 1975: Wind-generated gravity-capillary waves: Laboratory measurements of temporal growth rates using microwave backscatter. J. Fluid Mech., 97, 455479, https://doi.org/10.1017/S002211207500211X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laxague, N. J., B. K. Haus, D. G. Ortiz-Suslow, C. J. Smith, G. Novelli, H. Dai, T. Özgökmen, and H. C. Graber, 2017: Passive optical sensing of the near-surface wind-driven current profile. J. Atmos. Oceanic Technol., 34, 10971111, https://doi.org/10.1175/JTECH-D-16-0090.1.

    • Search Google Scholar
    • Export Citation
  • Liberzon, D., A. Vreme, S. Knobler, and I. Bentwich, 2019: Detection of breaking waves in single wave gauge records of surface elevation fluctuations. J. Atmos. Oceanic Technol., 36, 18631879, https://doi.org/10.1175/JTECH-D-19-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., 1993: Estimating breaking wave statistics from wind-wave time series data. Ann. Geophys., 11, 970972.

  • Lumley, J. L., and E. A. Terray, 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13, 20002007, https://doi.org/10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manning, C. C., R. H. Stanley, and D. E. Lott, 2016: Continuous measurements of dissolved Ne, Ar, Kr, and Xe ratios with a field-deployable gas equilibration mass spectrometer. Anal. Chem., 88, 30403048, https://doi.org/10.1021/acs.analchem.5b03102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marple, S. L., 1999: Computing the discrete-time “analytic” signal via FFT. IEEE Trans. Sig. Proc., 47, 2849, https://doi.org/10.1109/78.782222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medwin, H., 1970: In situ acoustic measurements of bubble populations in coastal ocean waters. J. Geophys. Res., 75, 599611, https://doi.org/10.1029/JC075i003p00599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medwin, H., 1977: In situ acoustic measurements of microbubbles at sea. J. Geophys. Res., 82, 971976, https://doi.org/10.1029/JC082i006p00971.

    • Search Google Scholar
    • Export Citation
  • Ochi, M., and M. Chiu, 1982: Nearshore wave spectra measured during Hurricane David. Coastal Eng. Proc., 1, 5, https://doi.org/10.9753/icce.v18.5.

  • Oppenheim, A. V., R. W. Schafer, and J. R. Buck, 1999: Discrete-Time Signal Processing. 2nd ed. Prentice Hall, 870 pp.

  • Ortiz-Suslow, D. G., and Q. Wang, 2019: An evaluation of Kolmogorov’s −5/3 power law observed within the turbulent airflow above the ocean. Geophys. Res. Lett., 46, 14 90114 911, https://doi.org/10.1029/2019GL085083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortiz-Suslow, D. G., Q. Wang, J. Kalogiros, and R. Yamaguchi, 2020: A method for identifying Kolmogorov’s inertial subrange in the velocity variance spectrum. J. Atmos. Oceanic Technol., 37, 85102, https://doi.org/10.1175/JTECH-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., and Coauthors, 2018: Technological advances for ocean surface measurements by the consortium for advanced research on transport of hydrocarbons in the environment (CARTHE). Mar. Technol. Soc. J., 52, 7176, https://doi.org/10.4031/MTSJ.52.6.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., W. C. Keller, V. Hesany, T. Kara, E. Bock, and M. A. Donelan, 1999: Bound waves and Bragg scattering in a wind-wave tank. J. Geophys. Res., 104, 32433263, https://doi.org/10.1029/1998JC900061.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., P. H. Dahl, J. P. Giovanangeli, and H. Branger, 2004: Bound and free surface waves in a large wind-wave tank. J. Geophys. Res., 109, C10002, https://doi.org/10.1029/2004JC002342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, R. J., and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc., A331, 735800, https://doi.org/10.1098/rsta.1990.0098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rensen, J., S. Luther, and D. Lohse, 2005: The effect of bubbles on developed turbulence. J. Fluid Mech., 538, 153187, https://doi.org/10.1017/S0022112005005276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riquelme, A., A. Desbiens, J. Bouchard, and R. Del Villar, 2013: Parameterization of bubble size distribution in flotation columns. IFAC Proc. Vol., 46, 128133, https://doi.org/10.3182/20130825-4-US-2038.00073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shemer, L., and D. Liberzon, 2014: Lagrangian kinematics of steep waves up to the inception of a spilling breaker. Phys. Fluids, 26, 016601, https://doi.org/10.1063/1.4860235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjöblom, A., and A.-S. Smedman, 2002: The turbulent kinetic energy budget in the marine atmospheric surface layer. J. Geophys. Res., 107, 3142, https://doi.org/10.1029/2001JC001016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784, https://doi.org/10.1063/1.868656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, R. H., W. J. Jenkins, D. E. Lott, and S. C. Doney, 2009: Noble gas constraints on air-sea gas exchange and bubble fluxes. J. Geophys. Res., 114, C11020, https://doi.org/10.1029/2009JC005396.

    • Search Google Scholar
    • Export Citation
  • Stansell, P., and C. MacFarlane, 2002: Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr., 32, 12691283, https://doi.org/10.1175/1520-0485(2002)032<1269:EIOWBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, M.-Y., and J. Cartmill, 1995: Effects of salinity on breaking wave generated void fraction and bubble size spectra. Air-Water Gas Transfer: Selected papers from the Third International Symposium on Air-Water Gas Transfer, B. Jähne and E. C. Monahan, Eds., AEON, 305311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc., A164, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind-waves in deep water and their role in air-sea gas transfer. Philos. Trans. Roy. Soc., A304, 155210, https://doi.org/10.1098/rsta.1982.0011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1984: A model of the turbulent diffusion of bubbles below the Sea surface. J. Phys. Oceanogr., 14, 841854, https://doi.org/10.1175/1520-0485(1984)014<0841:amottd>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and A. Stubbs, 1979: Bubbles in a freshwater lake. Nature, 279, 403405, https://doi.org/10.1038/279403a0.

  • Wang, Q., and Coauthors, 2018: CASPER: Coupled Air–Sea Processes and Electromagnetic Ducting Research. Bull. Amer. Meteor. Soc., 99, 14491471, https://doi.org/10.1175/BAMS-D-16-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, J., and M. Ochi, 1978: Variability of wave spectral shapes associated with hurricanes. Offshore Technol. Conf., Houston, TX, Society of Petroleum Engineers, OTC 3228-MS, https://doi.org/10.4043/3228-MS.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yelland, M., and P. K. Taylor, 1996: Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26, 541558, https://doi.org/10.1175/1520-0485(1996)026<0541:WSMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1997: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, https://doi.org/10.1016/S0029-8018(97)00011-5.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. V. Babanin, 2006: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36, 376394, https://doi.org/10.1175/JPO2859.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 249 252 21
Full Text Views 62 62 3
PDF Downloads 81 81 4

Bubble-Turbulence Dynamics and Dissipation Beneath Laboratory Breaking Waves

Andrew W. SmithaRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Andrew W. Smith in
Current site
Google Scholar
PubMed
Close
,
Brian K. HausaRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian K. Haus in
Current site
Google Scholar
PubMed
Close
, and
Rachel H. R. StanleybWellesley College, Wellesley, Massachusetts

Search for other papers by Rachel H. R. Stanley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Bubbles directly link sea surface structure to the dissipation rate of turbulence in the ocean surface layer through wave breaking, and they are an important vehicle for air–sea transfer of heat and gases and important for understanding both hurricanes and global climate. Adequate parameterization of bubble dynamics, especially in high winds, requires simultaneous measurements of surface waves and breaking-induced turbulence; collection of such data would be hazardous in the field, and they are largely absent from laboratory studies to date. We therefore present data from a series of laboratory wind-wave tank experiments designed to observe bubble size distributions in natural seawater beneath hurricane conditions and connect them to surface wave statistics and subsurface turbulence. A shadowgraph imager was used to observe bubbles in three different water temperature conditions. We used these controlled conditions to examine the role of stability, surface tension, and water temperature on bubble distributions. Turbulent kinetic energy dissipation rates were determined from subsurface ADCP data using a robust inertial-subrange identification algorithm and related to wind input via wave-dependent scaling. Bubble distributions shift from narrow to broadbanded and toward smaller radius with increased wind input and wave steepness. TKE dissipation rate and shear were shown to increase with wave steepness; this behavior is associated with a larger number of small bubbles in the distributions, suggesting shear is dominant in forcing bubbles in hurricane wind-wave conditions. These results have important implications for bubble-facilitated air–sea exchanges, near-surface ocean mixing, and the distribution of turbulence beneath the air–sea interface in hurricanes.

Significance Statement

Bubbles are a vehicle for the flux of heat, momentum, and gases between the atmosphere and ocean. These fluxes contribute to the energy budgets of hurricanes, climate, and upper-ocean biology. Few to no simultaneous measurements of surface waves, bubbles, and turbulence have been made in hurricane conditions. To improve numerical model representation of bubbles, we performed laboratory experiments to parameterize bubble size distributions using physical variables including wind and waves. Bubble distributions were found to become broadbanded and shift toward smaller radius with increased wind stress and wave steepness. Turbulence dissipation rate and shear were shown to increase with wave steepness. Our results give the first physically based bubble distribution parameterization from naturally breaking waves in hurricane-force conditions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew W. Smith, andrew.smith@rsmas.miami.edu

Abstract

Bubbles directly link sea surface structure to the dissipation rate of turbulence in the ocean surface layer through wave breaking, and they are an important vehicle for air–sea transfer of heat and gases and important for understanding both hurricanes and global climate. Adequate parameterization of bubble dynamics, especially in high winds, requires simultaneous measurements of surface waves and breaking-induced turbulence; collection of such data would be hazardous in the field, and they are largely absent from laboratory studies to date. We therefore present data from a series of laboratory wind-wave tank experiments designed to observe bubble size distributions in natural seawater beneath hurricane conditions and connect them to surface wave statistics and subsurface turbulence. A shadowgraph imager was used to observe bubbles in three different water temperature conditions. We used these controlled conditions to examine the role of stability, surface tension, and water temperature on bubble distributions. Turbulent kinetic energy dissipation rates were determined from subsurface ADCP data using a robust inertial-subrange identification algorithm and related to wind input via wave-dependent scaling. Bubble distributions shift from narrow to broadbanded and toward smaller radius with increased wind input and wave steepness. TKE dissipation rate and shear were shown to increase with wave steepness; this behavior is associated with a larger number of small bubbles in the distributions, suggesting shear is dominant in forcing bubbles in hurricane wind-wave conditions. These results have important implications for bubble-facilitated air–sea exchanges, near-surface ocean mixing, and the distribution of turbulence beneath the air–sea interface in hurricanes.

Significance Statement

Bubbles are a vehicle for the flux of heat, momentum, and gases between the atmosphere and ocean. These fluxes contribute to the energy budgets of hurricanes, climate, and upper-ocean biology. Few to no simultaneous measurements of surface waves, bubbles, and turbulence have been made in hurricane conditions. To improve numerical model representation of bubbles, we performed laboratory experiments to parameterize bubble size distributions using physical variables including wind and waves. Bubble distributions were found to become broadbanded and shift toward smaller radius with increased wind stress and wave steepness. Turbulence dissipation rate and shear were shown to increase with wave steepness. Our results give the first physically based bubble distribution parameterization from naturally breaking waves in hurricane-force conditions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew W. Smith, andrew.smith@rsmas.miami.edu
Save