• Alpers, W., and Coauthors, 2013: A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sens. Environ., 129, 132143, https://doi.org/10.1016/j.rse.2012.10.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrade, I., P. Sangra, S. Hormazabal, and M. Correa-Ramirez, 2013: Island mass effect in the Juan Fernandez Archipelago (33°S), southeastern Pacific. Deep-Sea Res. II, 84, 8699, https://doi.org/10.1016/j.dsr.2013.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, G., and A. Roshko, 1974: On density effects and large structures in turbulent mixing layers. J. Fluid Mech., 64, 775816, https://doi.org/10.1017/S002211207400190X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldeira, R., A. Stenger, X. Couvelard, I. Araujo, P. Testor, and A. Lorenzo, 2014: Evolution of an oceanic anticyclone in the lee of Madeira Island: In situ and remote sensing survey. J. Geophys. Res. Oceans, 119, 11951216, https://doi.org/10.1002/2013JC009493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centurioni, L., 2018: Drifter technology and impacts for sea surface temperature, sea-level pressure, and ocean circulation studies. Observing the Oceans in Real Time, R. Venkatesan et al., Eds., Springer, 3757, https://doi.org/10.1007/978-3-319-66493-4_3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M., T. Tang, C. Ho, and S. Chao, 2013: Kuroshio-induced wake in the lee of Green Island off Taiwan. J. Geophys. Res. Oceans, 118, 15081519, https://doi.org/10.1002/jgrc.20151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M., S. Jan, C. Liu, and Y. Cheng, 2019: Observations of island wakes at high Rossby numbers: Evolution of submesoscale vortices and free shear layers. J. Phys. Oceanogr., 49, 29973016, https://doi.org/10.1175/JPO-D-19-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., R. DeSzoeke, and M. Schlax, 1998: Geographic variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., M. Schlax, and R. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., M. H. Chang, D. Ko, S. Jan, M. Andres, A. Kirincich, Y. Yang, and J. Tai, 2020: Submesoscale eddy and frontal instabilities in the Kuroshio interaction with a cape south of Taiwan. J. Geophys. Res. Oceans, 125, e2020JC016123, https://doi.org/10.1029/2020JC016123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiswell, S., and C. Stevens, 2010: Lagrangian and Eulerian estimates of circulation in the lee of Kapiti Island, New Zealand. Cont. Shelf Res., 30, 515532, https://doi.org/10.1016/j.csr.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. McWilliams, and A. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, https://doi.org/10.1175/JPO3047.1.

  • Dong, C., Y. Liu, R. Lumpkin, M. Lankhorst, D. Chen, J. McWilliams, and Y. Guan, 2011: A scheme to identify loops from trajectories of oceanic surface drifters: An application to the Kuroshio Extension region. J. Atmos. Oceanic Technol., 28, 11671176, https://doi.org/10.1175/JTECH-D-10-05028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essink, S., V. Hormann, L. Centurioni, and A. Mahadevan, 2022: On characterizing ocean kinematics from surface drifters. J. Atmos. Oceanic Technol., 39, 11831198, https://doi.org/10.1175/JTECH-D-21-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flament, P., R. Lumpkin, J. Tournadre, and L. Armi, 2001: Vortex pairing in an unstable anticyclonic shear flow: Discrete subharmonics of one pendulum day. J. Fluid Mech., 440, 401409, https://doi.org/10.1017/S0022112001004955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henaff, M. L., V. Kourafalou, R. Dussurget, and R. Lumpkin, 2014: Cyclonic activity in the eastern Gulf of Mexico: Characterization from along-track altimetry and in situ drifter trajectories. Prog. Oceanogr., 120, 120138, https://doi.org/10.1016/j.pocean.2013.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heron, S., E. Metzger, and W. Skirving, 2006: Seasonal variations of the ocean surface circulation in the vicinity of Palau. J. Oceanogr., 62, 413426, https://doi.org/10.1007/s10872-006-0065-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K., E. Barton, and J. Simpson, 1990: The effects of flow disturbance by an oceanic island. J. Mar. Res., 48, 5573, https://doi.org/10.1357/002224090784984623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hormann, V., L. Centurioni, A. Mahadevan, S. Essink, E. D’Asaro, and B. Kumar, 2016: Variability of near-surface circulation and sea surface salinity observed from Lagrangian drifters in the Northern Bay of Bengal during the waning 2015 southwest monsoon. Oceanography, 29, 124133, https://doi.org/10.5670/oceanog.2016.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsin, Y., and B. Qiu, 2012: Seasonal fluctuations of the surface North Equatorial Countercurrent (NECC) across the Pacific basin. J. Geophys. Res., 117, C06001, https://doi.org/10.1029/2011JC007794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jagannathan, A., K. Srinivasan, J. McWilliams, M. Molemaker, and A. Stewart, 2021: Boundary-layer-mediated vorticity generation in currents over sloping bathymetry. J. Phys. Oceanogr., 51, 17571778, https://doi.org/10.1175/JPO-D-20-0253.1.

    • Search Google Scholar
    • Export Citation
  • Johnston, T., and Coauthors, 2019: Energy and momentum lost to wake eddies and lee waves generated by the North Equatorial Current and tidal flows at Peleliu, Palau. Oceanography, 32, 110125, https://doi.org/10.5670/oceanog.2019.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., N. Espana, F. Syamsudin, K. Richards, T. Jensen, P. Dutrieux, and A. Ishida, 2008: Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current system during the 2006/07 El Niño and 2007/08 La Niño. J. Oceanogr., 65, 325333, https://doi.org/10.1007/s10872-009-0030-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P., and I. Cohen, 2007: Fluid Mechanics. 4th ed. Academic Press, 904 pp.

  • LaCasce, J., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • Li, J., R. Zhang, and B. Jin, 2011: Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci., 7, 661669, https://doi.org/10.5194/os-7-661-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J., and P. Pérez-Brunius, 2021: Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico. Nonlinear Processes Geophys., 28, 181212, https://doi.org/10.5194/npg-28-181-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and P. Flament, 2001: Lagrangian statistics in the central North Pacific. J. Mar. Sci., 29, 141155, https://doi.org/10.1016/S0924-7963(01)00014-8.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., M. Alford, G. Voet, K. Zeiden, T. Johnston, and M. Siegelman, 2019: Eddy wake generation from broadband currents near Palau. J. Geophys. Res. Oceans, 124, 48914903, https://doi.org/10.1029/2019JC014945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., and K. J. Richards, 2001: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757773, https://doi.org/10.1016/S0967-0645(00)00096-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, S., and Coauthors, 2019: Island wakes observed from high-frequency current mapping radar. Oceanography, 32, 92101, https://doi.org/10.5670/oceanog.2019.415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittelstaedt, E., 1987: Cyclonic cold-core eddy in the eastern North Atlantic. I. Physical description. Mar. Ecol., 39, 145152, https://doi.org/10.3354/meps039145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, R., and A. Kirwan, 1975: Calculations of differential kinematic properties from Lagrangian observations in the western Caribbean Sea. J. Phys. Oceanogr., 5, 483491, https://doi.org/10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, A456, 12171280, https://doi.org/10.1098/rspa.2000.0560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1968: Some remarks on the importance of the “shear effect” on horizontal diffusion. J. Oceanogr. Soc. Japan, 24, 6069.

  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res. Oceanogr. Abstr., 18, 789802, https://doi.org/10.1016/0011-7471(71)90046-5.

  • Okubo, A., and C. Ebbesmeyer, 1976: Determination of vorticity, divergence, and deformation rates from analysis of drogue observations. Deep-Sea Res., 23, 349352, https://doi.org/10.1016/0011-7471(76)90875-5.

    • Search Google Scholar
    • Export Citation
  • Olson, D., 1991: Rings in the ocean. Annu. Rev. Earth Planet. Sci., 19, 281311, https://doi.org/10.1146/annurev.ea.19.050191.001435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, https://doi.org/10.1029/95JC03204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., T. Nakano, S. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun., 8, 14055, https://doi.org/10.1038/ncomms14055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, https://doi.org/10.1126/science.1085837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., G. Gopalakrishnan, and B. Cornuelle, 2015: Cyclonic eddies in the Gulf of Mexico: Observations by underwater gliders and simulations by numerical model. J. Phys. Oceanogr., 45, 313326, https://doi.org/10.1175/JPO-D-14-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., K. Zeiden, C. Ou, T. Johnston, J. MacKinnon, M. Alford, and G. Voet, 2019: Understanding vorticity caused by flow passing an island. Oceanography, 32, 6673, https://doi.org/10.5670/oceanog.2019.412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangra, P., and Coauthors, 2007: On the nature of oceanic eddies shed by the Island of Gran Canaria. Deep-Sea Res. I, 54, 687709, https://doi.org/10.1016/j.dsr.2007.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M., and Coauthors, 2019: The end of an El Niño: A view from Palau. Oceanography, 32, 3245, https://doi.org/10.5670/oceanog.2019.409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M., and D. Rudnick, 2015: Glider observations of the North Equatorial Current in the western tropical Pacific. J. Geophys. Res. Oceans, 120, 35863605, https://doi.org/10.1002/2014JC010595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M., and D. Rudnick, 2017: Mindanao current and undercurrent: Thermohaline structure and transport from repeat glider observations. J. Phys. Oceanogr., 47, 20552075, https://doi.org/10.1175/JPO-D-16-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C., 2016: Curved density fronts: Cyclogeostrophic adjustment and frontogenesis. J. Phys. Oceanogr., 46, 31933207, https://doi.org/10.1175/JPO-D-16-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., E. D’Asaro, C. Lee, J. Klymak, M. Molemaker, and J. McWilliams, 2013: Statistics of vertical vorticity, divergence and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spydell, M., F. Feddersen, and J. Macmahan, 2019: The effect of drifter GPS errors on estimates of submesoscale vorticity. J. Atmos. Oceanic Technol., 36, 21012119, https://doi.org/10.1175/JTECH-D-19-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W., C. Dong, W. Tan, and Y. He, 2019: Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sens., 11, 208, https://doi.org/10.3390/rs11020208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R., D. Rudnick, M. Mazloff, B. Cornuelle, and R. Davis, 2012: Thermohaline structure in the California Current system: Observations and modeling of spice variance. J. Geophys. Res., 117, C02008, https://doi.org/10.1029/2011JC007589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 773 pp.

  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., J. Wesson, D. Wang, W. Teague, and Z. Hallock, 2020: Observations of flow separation and mixing around the Northern Palau Island/Ridge. J. Phys. Oceanogr., 50, 25292559, https://doi.org/10.1175/JPO-D-19-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G., F. Wang, Y. Li, and P. Lin, 2013: Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. J. Geophys. Res. Oceans, 118, 19061925, https://doi.org/10.1002/jgrc.20164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeiden, K., D. Rudnick, and J. MacKinnon, 2019: Glider observations of a mesoscale oceanic island wake. J. Phys. Oceanogr., 49, 22172235, https://doi.org/10.1175/JPO-D-18-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeiden, K., J. MacKinnon, M. Alford, D. Rudnick, G. Voet, and H. Wijesekera, 2021: Broadband submesoscale vorticity generated by flow around an island. J. Phys. Oceanogr., 51, 13011317, https://doi.org/10.1175/JPO-D-20-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., Y. Li, and F. Wang, 2013: Dynamical responses of the west Pacific North Equatorial Countercurrent (NECC) system to El Niño events. J. Geophys. Res. Oceans, 118, 28282844, https://doi.org/10.1002/jgrc.20196.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 496 370 6
Full Text Views 189 139 6
PDF Downloads 213 158 8

Vorticity in the Wake of Palau from Lagrangian Surface Drifters

Kristin L. ZeidenaApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Kristin L. Zeiden in
Current site
Google Scholar
PubMed
Close
,
Daniel L. RudnickbScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Daniel L. Rudnick in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. MacKinnonbScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jennifer A. MacKinnon in
Current site
Google Scholar
PubMed
Close
,
Verena HormannbScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Verena Hormann in
Current site
Google Scholar
PubMed
Close
, and
Luca CenturionibScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Luca Centurioni in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wake eddies are important to physical oceanographers because they tend to dominate current variability in the lee of islands. However, their generation and evolution has been difficult to study due to their intermittency. In this study, 2 years of observations from Surface Velocity Program (SVP) drifters are used to calculate relative vorticity (ζ) and diffusivity (κ) in the wake generated by westward flow past the archipelago of Palau. Over 2 years, 19 clusters of five SVP drifters ∼5 km in scale were released from the north end of the archipelago. Out of these, 15 were entrained in the wake. We compare estimates of ζ from both velocity spatial gradients (least squares fitting) and velocity time series (wavelet analysis). Drifters in the wake were entrained in either energetic submesoscale eddies with initial ζ up to 6f, or island-scale recirculation and large-scale lateral shear with ζ ∼ 0.1f. Here f is the local Coriolis frequency. Mean wake vorticity is initially 1.5f but decreases inversely with time (t), while mean cluster scale (L) increases as Lt. Kinetic energy measured by the drifters is comparatively constant. This suggests ζ is predominantly a function of scale, confirmed by binning enstrophy (ζ 2) by inverse scale. We find κL 4/3 and upper and lower bounds for L(t) are given by t 3/2 and t 1/2, respectively. These trends are predicted by a model of dispersion due to lateral shear. We argue the observed time dependence of cluster scale and vorticity suggest island-scale shear controls eddy growth in the wake of Palau.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Oceanic Flow–Topography Interactions Special Collection.

Corresponding author: Kristin L. Zeiden, kzeiden@uw.edu

Abstract

Wake eddies are important to physical oceanographers because they tend to dominate current variability in the lee of islands. However, their generation and evolution has been difficult to study due to their intermittency. In this study, 2 years of observations from Surface Velocity Program (SVP) drifters are used to calculate relative vorticity (ζ) and diffusivity (κ) in the wake generated by westward flow past the archipelago of Palau. Over 2 years, 19 clusters of five SVP drifters ∼5 km in scale were released from the north end of the archipelago. Out of these, 15 were entrained in the wake. We compare estimates of ζ from both velocity spatial gradients (least squares fitting) and velocity time series (wavelet analysis). Drifters in the wake were entrained in either energetic submesoscale eddies with initial ζ up to 6f, or island-scale recirculation and large-scale lateral shear with ζ ∼ 0.1f. Here f is the local Coriolis frequency. Mean wake vorticity is initially 1.5f but decreases inversely with time (t), while mean cluster scale (L) increases as Lt. Kinetic energy measured by the drifters is comparatively constant. This suggests ζ is predominantly a function of scale, confirmed by binning enstrophy (ζ 2) by inverse scale. We find κL 4/3 and upper and lower bounds for L(t) are given by t 3/2 and t 1/2, respectively. These trends are predicted by a model of dispersion due to lateral shear. We argue the observed time dependence of cluster scale and vorticity suggest island-scale shear controls eddy growth in the wake of Palau.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Oceanic Flow–Topography Interactions Special Collection.

Corresponding author: Kristin L. Zeiden, kzeiden@uw.edu
Save