Abstract
Wake eddies are important to physical oceanographers because they tend to dominate current variability in the lee of islands. However, their generation and evolution has been difficult to study due to their intermittency. In this study, 2 years of observations from Surface Velocity Program (SVP) drifters are used to calculate relative vorticity (ζ) and diffusivity (κ) in the wake generated by westward flow past the archipelago of Palau. Over 2 years, 19 clusters of five SVP drifters ∼5 km in scale were released from the north end of the archipelago. Out of these, 15 were entrained in the wake. We compare estimates of ζ from both velocity spatial gradients (least squares fitting) and velocity time series (wavelet analysis). Drifters in the wake were entrained in either energetic submesoscale eddies with initial ζ up to 6f, or island-scale recirculation and large-scale lateral shear with ζ ∼ 0.1f. Here f is the local Coriolis frequency. Mean wake vorticity is initially 1.5f but decreases inversely with time (t), while mean cluster scale (L) increases as L ∝ t. Kinetic energy measured by the drifters is comparatively constant. This suggests ζ is predominantly a function of scale, confirmed by binning enstrophy (ζ 2) by inverse scale. We find κ ∝ L 4/3 and upper and lower bounds for L(t) are given by t 3/2 and t 1/2, respectively. These trends are predicted by a model of dispersion due to lateral shear. We argue the observed time dependence of cluster scale and vorticity suggest island-scale shear controls eddy growth in the wake of Palau.
© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
This article is included in the Oceanic Flow–Topography Interactions Special Collection.