• Allen, J. S., and P. A. Newberger, 1998: On symmetric instabilities in oceanic bottom boundary layers. J. Phys. Oceanogr., 28, 11311151, https://doi.org/10.1175/1520-0485(1998)028<1131:OSIIOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluteau, C. E., N. L. Jones, and G. N. Ivey, 2013: Turbulent mixing efficiency at an energetic ocean site. J. Geophys. Res. Oceans, 118, 46624672, https://doi.org/10.1002/jgrc.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffard, D., and L. Boegman, 2013: A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans, 61–62, 1434, https://doi.org/10.1016/j.dynatmoce.2013.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brethouwer, G., P. Billant, E. Lindborg, and J.-M. Chomaz, 2007: Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech., 585, 343368, https://doi.org/10.1017/S0022112007006854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., N. S. Lucas, S. E. Belcher, T. P. Rippeth, A. L. M. Grant, J. Le Sommer, A. O. Ajayi, and A. C. Naveira Garabato, 2019: The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer. J. Adv. Model. Earth Syst., 11, 40664094, https://doi.org/10.1029/2019MS001801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caulfield, C., 2021: Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech., 53, 113145, https://doi.org/10.1146/annurev-fluid-042320-100458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chor, T., J. O. Wenegrat, and J. Taylor, 2022: Code for the paper “Insights into the mixing efficiency of submesoscale centrifugal-symmetric instabilities.” Zenodo, https://doi.org/10.5281/zenodo.6509962.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies Wykes, M. S., and S. B. Dalziel, 2014: Efficient mixing in stratified flows: Experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech., 756, 10271057, https://doi.org/10.1017/jfm.2014.308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., J. C. McWilliams, and M. J. Molemaker, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., 45, 12241241, https://doi.org/10.1175/JPO-D-13-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garanaik, A., and S. K. Venayagamoorthy, 2019: On the inference of the state of turbulence and mixing efficiency in stably stratified flows. J. Fluid Mech., 867, 323333, https://doi.org/10.1017/jfm.2019.142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., G. O. Hughes, and R. W. Griffiths, 2013: Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett., 111, 124301, https://doi.org/10.1103/PhysRevLett.111.124301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, S. D., 2003: Nonlinear vertical scale selection in equatorial inertial instability. J. Atmos. Sci., 60, 977990, https://doi.org/10.1175/1520-0469(2003)060%3C0977:NVSSIE%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016a: Submesoscale dynamics of a Gulf stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr., 46, 305325, https://doi.org/10.1175/JPO-D-14-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016b: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, https://doi.org/10.1017/S0022112061000317.

  • Howland, C. J., J. R. Taylor, and C. Caulfield, 2020: Mixing in forced stratified turbulence and its dependence on large-scale forcing. J. Fluid Mech., 898, A7, https://doi.org/10.1017/jfm.2020.383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiao, Y., and W. K. Dewar, 2015: The energetics of centrifugal instability. J. Phys. Oceanogr., 45, 15541573, https://doi.org/10.1175/JPO-D-14-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2010: 2.5D vertical slice modelling. Advanced Ocean Modelling: Using Open-Source Software, Springer, 97124, https://doi.org/10.1007/978-3-642-10610-1_4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khani, S., 2018: Mixing efficiency in large-eddy simulations of stratified turbulence. J. Fluid Mech., 849, 373394, https://doi.org/10.1017/jfm.2018.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khani, S., and M. L. Waite, 2014: Buoyancy scale effects in large-eddy simulations of stratified turbulence. J. Fluid Mech., 754, 7597, https://doi.org/10.1017/jfm.2014.381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloosterziel, R. C., G. F. Carnevale, and P. Orlandi, 2007: Inertial instability in rotating and stratified fluids: Barotropic vortices. J. Fluid Mech., 583, 379412, https://doi.org/10.1017/S0022112007006325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, https://doi.org/10.3402/tellusa.v14i2.9537.

  • Maffioli, A., G. Brethouwer, and E. Lindborg, 2016: Mixing efficiency in stratified turbulence. J. Fluid Mech., 794, R3, https://doi.org/10.1017/jfm.2016.206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., and W. R. Peltier, 2012a: The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1: Shear aligned convection, pairing, and braid instabilities. J. Fluid Mech., 708, 544, https://doi.org/10.1017/jfm.2012.304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., and W. R. Peltier, 2012b: The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 2: The influence of stratification. J. Fluid Mech., 708, 4570, https://doi.org/10.1017/jfm.2012.294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. P. Caulfield, and W. R. Peltier, 2017a: Role of overturns in optimal mixing in stratified mixing layers. J. Fluid Mech., 826, 522552, https://doi.org/10.1017/jfm.2017.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. Bouffard, C. P Caulfield, R. Ferrari, M. Nikurashin, W. R. Peltier, and W. D. Smyth, 2017b: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. P. Caulfield, and M. H. Alford, 2021: Goldilocks mixing in oceanic shear-induced turbulent overturns. J. Fluid Mech., 928, A1, https://doi.org/10.1017/jfm.2021.740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., A472, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, https://doi.org/10.1017/S0022112061000305.

  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, https://doi.org/10.1029/96JC00508.

  • Naveira Garabato, A. C., and Coauthors, 2019: Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc. Natl. Acad. Sci. USA, 116, 13 23313 238, https://doi.org/10.1073/pnas.1904087116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and C. P. Caulfield, 2003: Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech., 35, 135167, https://doi.org/10.1146/annurev.fluid.35.101101.161144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piomelli, U., T. A. Zang, C. G. Speziale, and M. Y. Hussaini, 1990: On the large-eddy simulation of transitional wall-bounded flows. Phys. Fluids, A2, 257, https://doi.org/10.1063/1.857774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmani, M., G. A. Lawrence, and B. R. Seymour, 2014: The effect of Reynolds number on mixing in Kelvin–Helmholtz billows. J. Fluid Mech., 759, 612641, https://doi.org/10.1017/jfm.2014.588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramadhan, A., and Coauthors, 2020: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs. J. Open Source Software, 5, 2018, https://doi.org/10.21105/joss.02018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., A. F. Thompson, M. M. Flexas, and J. Sprintall, 2017: Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning. Nat. Geosci., 10, 840845, https://doi.org/10.1038/ngeo3053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salehipour, H., and W. R. Peltier, 2015: Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech., 775, 464500, https://doi.org/10.1017/jfm.2015.305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savelyev, I., and Coauthors, 2018: Aerial observations of symmetric instability at the north wall of the Gulf Stream. Geophys. Res. Lett., 45, 236244, https://doi.org/10.1002/2017GL075735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shih, L. H., J. R. Koseff, G. N. Ivey, and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech., 525, 193214, https://doi.org/10.1017/S0022112004002587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spingys, C. P., A. C. Naveira Garabato, S. Legg, K. L. Polzin, E. P. Abrahamsen, C. E. Buckingham, A. Forryan, and E. E. Frajka-Williams, 2021: Mixing and transformation in a deep western boundary current: A case study. J. Phys. Oceanogr., 51, 12051222, https://doi.org/10.1175/JPO-D-20-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, H. B., 1933: On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. Roy. Soc. London, A142, 621628, https://doi.org/10.1098/rspa.1933.0193.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13. Springer, 670 pp.

  • Taylor, J. R., and R. Ferrari, 2009: On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech., 622, 103113, https://doi.org/10.1017/S0022112008005272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2012: On the Kelvin–Helmholtz route to turbulence. J. Fluid Mech., 708, 14, https://doi.org/10.1017/jfm.2012.383.

  • Venayagamoorthy, S. K., and D. D. Stretch, 2010: On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech., 644, 359369, https://doi.org/10.1017/S002211200999293X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and L. N. Thomas, 2020: Centrifugal and symmetric instability during Ekman adjustment of the bottom boundary layer. J. Phys. Oceanogr., 50, 17931812, https://doi.org/10.1175/JPO-D-20-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018a: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., L. N. Thomas, J. Gula, and J. C. McWilliams, 2018b: Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr., 48, 21412165, https://doi.org/10.1175/JPO-D-17-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wienkers, A. F., L. N. Thomas, and J. R. Taylor, 2021: The influence of front strength on the development and equilibration of symmetric instability. Part 1. Growth and saturation. J. Fluid Mech., 926, A6, https://doi.org/10.1017/jfm.2021.680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1996: Diascalar flux and the rate of fluid mixing. J. Fluid Mech., 317, 179193, https://doi.org/10.1017/S0022112096000717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 267 267 112
Full Text Views 86 86 40
PDF Downloads 131 131 58

Insights into the Mixing Efficiency of Submesoscale Centrifugal–Symmetric Instabilities

View More View Less
  • 1 aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | 2 bDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
Restricted access

Abstract

Submesoscale processes provide a pathway for energy to transfer from the balanced circulation to turbulent dissipation. One class of submesoscale phenomena that has been shown to be particularly effective at removing energy from the balanced flow is centrifugal–symmetric instabilities (CSIs), which grow via geostrophic shear production. CSIs have been observed to generate significant mixing in both the surface boundary layer and bottom boundary layer flows along bathymetry, where they have been implicated in the mixing and water mass transformation of Antarctic Bottom Water. However, the mixing efficiency (i.e., the fraction of the energy extracted from the flow used to irreversibly mix the fluid) of these instabilities remains uncertain, making estimates of mixing and energy dissipation due to CSI difficult. In this work we use large-eddy simulations to investigate the mixing efficiency of CSIs in the submesoscale range. We find that centrifugally dominated CSIs (i.e., CSI mostly driven by horizontal shear production) tend to have a higher mixing efficiency than symmetrically dominated ones (i.e., driven by vertical shear production). The mixing efficiency associated with CSIs can therefore alternately be significantly higher or significantly lower than the canonical value used by most studies. These results can be understood in light of recent work on stratified turbulence, whereby CSIs control the background state of the flow in which smaller-scale secondary overturning instabilities develop, thus actively modifying the characteristics of mixing by Kelvin–Helmholtz instabilities. Our results also suggest that it may be possible to predict the mixing efficiency with more readily measurable parameters (viz., the Richardson and Rossby numbers), which would allow for parameterization of this effect.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomas Chor, tchor@umd.edu

Abstract

Submesoscale processes provide a pathway for energy to transfer from the balanced circulation to turbulent dissipation. One class of submesoscale phenomena that has been shown to be particularly effective at removing energy from the balanced flow is centrifugal–symmetric instabilities (CSIs), which grow via geostrophic shear production. CSIs have been observed to generate significant mixing in both the surface boundary layer and bottom boundary layer flows along bathymetry, where they have been implicated in the mixing and water mass transformation of Antarctic Bottom Water. However, the mixing efficiency (i.e., the fraction of the energy extracted from the flow used to irreversibly mix the fluid) of these instabilities remains uncertain, making estimates of mixing and energy dissipation due to CSI difficult. In this work we use large-eddy simulations to investigate the mixing efficiency of CSIs in the submesoscale range. We find that centrifugally dominated CSIs (i.e., CSI mostly driven by horizontal shear production) tend to have a higher mixing efficiency than symmetrically dominated ones (i.e., driven by vertical shear production). The mixing efficiency associated with CSIs can therefore alternately be significantly higher or significantly lower than the canonical value used by most studies. These results can be understood in light of recent work on stratified turbulence, whereby CSIs control the background state of the flow in which smaller-scale secondary overturning instabilities develop, thus actively modifying the characteristics of mixing by Kelvin–Helmholtz instabilities. Our results also suggest that it may be possible to predict the mixing efficiency with more readily measurable parameters (viz., the Richardson and Rossby numbers), which would allow for parameterization of this effect.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomas Chor, tchor@umd.edu

Supplementary Materials

    • Supplemental Materials (ZIP 45.6 MB)
Save