• Arbic, B. K., K. L. Polzin, R. B. Scott, J. G. Richman, and J. F. Shriver, 2013: On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr., 43, 283300, https://doi.org/10.1175/JPO-D-11-0240.1.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, https://doi.org/10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and W. Wu, 2019: Some expectations for submesoscale sea surface height variance spectra. J. Phys. Oceanogr., 49, 22712289, https://doi.org/10.1175/JPO-D-18-0272.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Barkan, and A. N. Garabato, 2020: Time scales of submesoscale flow inferred from a mooring array. J. Phys. Oceanogr., 50, 10651086, https://doi.org/10.1175/JPO-D-19-0254.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., S. T. Gille, C. B. Rocha, D. Menemenlis, and M. Passaro, 2019: Characterizing the transition from balanced to unbalanced motions in the Southern California Current. J. Geophys. Res. Oceans, 124, 20882109, https://doi.org/10.1029/2018JC014583.

    • Search Google Scholar
    • Export Citation
  • Damerell, G. M., K. J. Heywood, A. F. Thompson, U. Binetti, and J. Kaiser, 2016: The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013. J. Geophys. Res. Oceans, 121, 30753089, https://doi.org/10.1002/2015JC011423.

    • Search Google Scholar
    • Export Citation
  • Dibarboure, G., F. Boy, J. D. Desjonqueres, S. Labroue, Y. Lasne, N. Picot, J. C. Poisson, and P. Thibaut, 2014: Investigating short-wavelength correlated errors on low-resolution mode altimetry. J. Atmos. Oceanic Technol., 31, 13371362, https://doi.org/10.1175/JTECH-D-13-00081.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The seasonality of submesoscale energy production, content, and cascade. Geophys. Res. Lett., 47, e2020GL087388, https://doi.org/10.1029/2020GL087388.

    • Search Google Scholar
    • Export Citation
  • Du Plessis, M., S. Swart, I. J. Ansorge, A. Mahadevan, and A. F. Thompson, 2019: Southern ocean seasonal restratification delayed by submesoscale wind–front interactions. J. Phys. Oceanogr., 49, 10351053, https://doi.org/10.1175/JPO-D-18-0136.1.

    • Search Google Scholar
    • Export Citation
  • Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P.-Y. Le Traon, 2016: Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res. Oceans, 121, 49104927, https://doi.org/10.1002/2015JC010904.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 2007: Eddy length scales in the North Atlantic Ocean. J. Geophys. Res., 112, C06004, https://doi.org/10.1029/2006JC003901.

  • Erickson, Z. K., and A. F. Thompson, 2018: The seasonality of physically driven export at submesoscales in the northeast Atlantic Ocean. Global Biogeochem. Cycles, 32, 11441162, https://doi.org/10.1029/2018GB005927.

    • Search Google Scholar
    • Export Citation
  • Erickson, Z. K., A. F. Thompson, J. Callies, X. Yu, A. N. Garabato, and P. Klein, 2020: The vertical structure of open-ocean submesoscale variability during a full seasonal cycle. J. Phys. Oceanogr., 50, 145160, https://doi.org/10.1175/JPO-D-19-0030.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO Version 4 Release 3. 10 pp., https://www.ecco-group.org/docs/v4r3_summary.pdf.

  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, https://doi.org/10.1146/annurev.fl.11.010179.002011.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and P. P. Niiler, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr., 20, 141177, https://doi.org/10.1016/0011-7471(73)90049-1.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Lahaye, N., J. Gula, and G. Roullet, 2019: Sea surface signature of internal tides. Geophys. Res. Lett., 46, 38803890, https://doi.org/10.1029/2018GL081848.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2007: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, 1235 pp.

  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the north pacific subtropical countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the World Ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2016: M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46, 322, https://doi.org/10.1175/JPO-D-15-0065.1.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016a: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., S. T. Gille, T. K. Chereskin, and D. Menemenlis, 2016b: Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43, 11 30411 311, https://doi.org/10.1002/2016GL071349.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. N. Flagg, K. Donohue, S. Fontana, R. Curry, M. Andres, and J. Forsyth, 2019: Oleander is more than a flower. Oceanography, 32, 126137, https://doi.org/10.5670/oceanog.2019.319.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, R. J. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, R., and W. Emery, 2014: Data Analysis Methods in Physical Oceanography. 3rd ed. Elsevier Science, 673 pp., https://doi.org/10.1016/C2010-0-66362-0.

  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Search Google Scholar
    • Export Citation
  • Vergara, O., R. Morrow, I. Pujol, G. Dibarboure, and C. Ubelmann, 2019: Revised global wave number spectra from recent altimeter observations. J. Geophys. Res. Oceans, 124, 35233537, https://doi.org/10.1029/2018JC014844.

    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., C. N. Flagg, K. Donohue, and H. Thomas Rossby, 2010: Wavenumber spectrum in the Gulf Stream from shipboard ADCP observations and comparison with altimetry measurements. J. Phys. Oceanogr., 40, 840844, https://doi.org/10.1175/2009JPO4330.1.

    • Search Google Scholar
    • Export Citation
  • Wortham, C., and C. Wunsch, 2014: A multidimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, https://doi.org/10.1175/JPO-D-13-0113.1.

    • Search Google Scholar
    • Export Citation
  • Wortham, C., J. Callies, and M. G. Scharffenberg, 2014: Asymmetries between wavenumber spectra of along- and across-track velocity from tandem mission altimetry. J. Phys. Oceanogr., 44, 11511160, https://doi.org/10.1175/JPO-D-13-0153.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2011: Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. J. Phys. Oceanogr., 41, 802809, https://doi.org/10.1175/2010JPO4558.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, https://doi.org/10.1175/JPO-D-12-0106.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and R. D. Ray, 2017: Using an altimeter-derived internal tide model to remove tides from in situ data. Geophys. Res. Lett., 44, 42414245, https://doi.org/10.1002/2017GL072950.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 540 445 12
Full Text Views 242 181 13
PDF Downloads 307 242 18

Seasonality and Spatial Dependence of Mesoscale and Submesoscale Ocean Currents from Along-Track Satellite Altimetry

Albion LawrenceaBrandeis University, Waltham, Massachusetts

Search for other papers by Albion Lawrence in
Current site
Google Scholar
PubMed
Close
and
Jörn CalliesbCalifornia Institute of Technology, Pasadena, California

Search for other papers by Jörn Callies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Along-track wavenumber spectral densities of sea surface height (SSH) are estimated from Jason-2 altimetry data as a function of spatial location and calendar month to understand the seasonality of meso- and submesoscale balanced dynamics across the global ocean. Regions with significant mode-1 and mode-2 baroclinic tides are rejected, restricting the analysis to the extratropics. Where balanced motion dominates, the SSH spectral density is averaged over all pass segments in a region for each calendar month and is fit to a four-parameter model consisting of a flat plateau at low wavenumbers, a transition at wavenumber k0 to a red power law spectrum ks, and a white spectrum at high wavenumbers that models the altimeter noise. The monthly time series of the model parameters are compared to the evolution of the mixed layer. The annual mode of the spectral slope s reaches a minimum after the mixed layer deepens, and the annual mode of the bandpassed kinetic energy in the ranges [2k0, 4k0] and [k0, 2k0] peak ∼2 and ∼4 months, respectively, after the maximum of the annual mode of the mixed layer depth. This analysis is consistent with an energization of the submesoscale by a winter mixed layer instability followed by an inverse cascade of kinetic energy to the mesoscale, in agreement with prior modeling studies and in situ measurements. These results are compared to prior modeling, in situ, and satellite investigations of specific regions and are broadly consistent with them within measurement uncertainties.

Significance Statement

This paper uses satellite observations to understand the source of ocean dynamics at the 1–100-km scales at which vertical motion becomes important and which are thus relevant for biology and for the exchange of heat and carbon with the atmosphere. The observations are consistent with a seasonal variation of dynamics at these scales, predicted by a specific theory of upper-ocean turbulence and confirmed by modeling studies and regional observations. We update prior satellite-based studies by excluding regions with competing effects, by our treatment of the noise, and by our characterization of the seasonality. This work provides a template for analyzing data from the upcoming Surface Water and Ocean Topography (SWOT) satellite.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albion Lawrence, albion@brandeis.edu

Abstract

Along-track wavenumber spectral densities of sea surface height (SSH) are estimated from Jason-2 altimetry data as a function of spatial location and calendar month to understand the seasonality of meso- and submesoscale balanced dynamics across the global ocean. Regions with significant mode-1 and mode-2 baroclinic tides are rejected, restricting the analysis to the extratropics. Where balanced motion dominates, the SSH spectral density is averaged over all pass segments in a region for each calendar month and is fit to a four-parameter model consisting of a flat plateau at low wavenumbers, a transition at wavenumber k0 to a red power law spectrum ks, and a white spectrum at high wavenumbers that models the altimeter noise. The monthly time series of the model parameters are compared to the evolution of the mixed layer. The annual mode of the spectral slope s reaches a minimum after the mixed layer deepens, and the annual mode of the bandpassed kinetic energy in the ranges [2k0, 4k0] and [k0, 2k0] peak ∼2 and ∼4 months, respectively, after the maximum of the annual mode of the mixed layer depth. This analysis is consistent with an energization of the submesoscale by a winter mixed layer instability followed by an inverse cascade of kinetic energy to the mesoscale, in agreement with prior modeling studies and in situ measurements. These results are compared to prior modeling, in situ, and satellite investigations of specific regions and are broadly consistent with them within measurement uncertainties.

Significance Statement

This paper uses satellite observations to understand the source of ocean dynamics at the 1–100-km scales at which vertical motion becomes important and which are thus relevant for biology and for the exchange of heat and carbon with the atmosphere. The observations are consistent with a seasonal variation of dynamics at these scales, predicted by a specific theory of upper-ocean turbulence and confirmed by modeling studies and regional observations. We update prior satellite-based studies by excluding regions with competing effects, by our treatment of the noise, and by our characterization of the seasonality. This work provides a template for analyzing data from the upcoming Surface Water and Ocean Topography (SWOT) satellite.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albion Lawrence, albion@brandeis.edu
Save