• Abascal, A. J., J. Sheinbaum, J. Candela, J. Ochoa, and A. Badan, 2003: Analysis of flow variability in the Yucatan Channel. J. Geophys. Res., 108, 3381, https://doi.org/10.1029/2003JC001922.

    • Search Google Scholar
    • Export Citation
  • Andrade-Canto, F., J. Sheinbaum, and L. Z. Sansón, 2013: A Lagrangian approach to the Loop Current eddy separation. Nonlinear Processes Geophys., 20, 8596, https://doi.org/10.5194/npg-20-85-2013.

    • Search Google Scholar
    • Export Citation
  • Andrade-Canto, F., D. Karrasch, and F. Beron-Vera, 2020: Genesis, evolution, and apocalypse of Loop Current rings. Phys. Fluids, 32, 116603, https://doi.org/10.1063/5.0030094.

    • Search Google Scholar
    • Export Citation
  • Androulidakis, Y., V. Kourafalou, M. J. Olascoaga, F. J. Beron-Vera, M. Le Hénaff, H. Kang, and N. Ntaganou, 2021: Impact of Caribbean anticyclones on Loop Current variability. Ocean Dyn., 71, 935956, https://doi.org/10.1007/s10236-021-01474-9.

    • Search Google Scholar
    • Export Citation
  • Athié, G., J. Candela, J. Ochoa, and J. Sheinbaum, 2012: Impact of Caribbean cyclones on the detachment of Loop Current anticyclones. J. Geophys. Res., 117, C03018, https://doi.org/10.1029/2011JC007090.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., 2010: Mixing by low- and high-resolution surface geostrophic currents. J. Geophys. Res., 115, C10027, https://doi.org/10.1029/2009JC006006.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., A. Hadjighasem, Q. Xia, M. J. Olascoaga, and G. Haller, 2018: Coherent Lagrangian swirls among submesoscale motions. Proc. Natl. Acad. Sci. USA, 116, 18 25118 256, https://doi.org/10.1073/pnas.1701392115.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., J. Ochoa, A. Badan, J. Candela, and J. Sheinbaum, 2002: Deep flows in the Yucatan Channel and their relation to changes in the Loop Current extension. J. Geophys. Res., 107, 3233, https://doi.org/10.1029/2001JC001256.

    • Search Google Scholar
    • Export Citation
  • Candela, J., J. Sheinbaum, J. Ochoa, A. Badan, and R. Leben, 2002: The potential vorticity flux through the Yucatan Channel and the Loop Current in the Gulf of Mexico. Geophys. Res. Lett., 29, 2059, https://doi.org/10.1029/2002GL015587.

    • Search Google Scholar
    • Export Citation
  • Candela, J., and Coauthors, 2019: The flow through the Gulf of Mexico. J. Phys. Oceanogr., 49, 13811401, https://doi.org/10.1175/JPO-D-18-0189.1.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65, 6083, https://doi.org/10.1016/j.jmarsys.2005.09.016.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. R. Watts, P. Hamilton, R. Leben, and M. Kennelly, 2016: Loop Current eddy formation and baroclinic instability. Dyn. Atmos. Oceans, 76, 195216, https://doi.org/10.1016/j.dynatmoce.2016.01.004.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Duran-Matute, M., and O. U. Velasco-Fuentes, 2008: Passage of a barotropic vortex through a gap. J. Phys. Oceanogr., 38, 28172831, https://doi.org/10.1175/2008JPO3887.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, C. A., A. M. Moore, I. Hoteit, and B. D. Cornuelle, 2015: Regional ocean data assimilation. Annu. Rev. Mar. Sci., 7, 2142, https://doi.org/10.1146/annurev-marine-010814-015821.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772592, https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., L.-Y. Oey, H.-C. Lee, and W. Sturges, 2003: The variability of currents in the Yucatan Channel: Analysis of results from a numerical ocean model. J. Phys. Oceanogr., 108, 3012, https://doi.org/10.1029/2002JC001509.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, https://doi.org/10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee, 2002: The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Oceanic Technol., 19, 240252, https://doi.org/10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., T. Lee, B. Cheng, and D. Menemenlis, 2004: The origin, pathway, and destination of Niño-3 water estimated by a simulated passive tracer and its adjoint. J. Phys. Oceanogr., 34, 582604, https://doi.org/10.1175/2515.1.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., P. Heimbach, and C. Wunsch, 2006: Strategies for nested and eddy-permitting state estimation. J. Geophys. Res., 111, C10073, https://doi.org/10.1029/2005JC003094.

    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474, https://doi.org/10.1145/293686.293695.

    • Search Google Scholar
    • Export Citation
  • Gilbert, J., and C. Lemaréchal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program., 45, 407435, https://doi.org/10.1007/BF01589113.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., B. D. Cornuelle, I. Hoteit, D. L. Rudnick, and W. B. Owens, 2013a: State estimates and forecasts of the Loop Current in the Gulf of Mexico using the MITgcm and its adjoint. J. Geophys. Res. Oceans, 118, 32923314, https://doi.org/10.1002/jgrc.20239.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., B. D. Cornuelle, and I. Hoteit, 2013b: Adjoint sensitivity studies of Loop Current and eddy shedding in the Gulf of Mexico. J. Geophys. Res. Oceans, 118, 33153335, https://doi.org/10.1002/jgrc.20240.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., I. Hoteit, B. D. Cornuelle, and D. L. Rudnick, 2019: Comparison of 4DVAR and EnKF states estimates and forecasts in the Gulf of Mexico. Quart. J. Roy. Meteor. Soc., 145, 13541376, https://doi.org/10.1002/qj.3493.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, G., B. D. Cornuelle, M. R. Mazloff, P. F. Worcester, and M. A. Dzieciuch, 2021: State estimates and forecasts of the eddy field in the subtropical countercurrent in the northern Philippine Sea. J. Atmos. Oceanic Technol., 38, 18891911, https://doi.org/10.1175/JTECH-D-20-0083.1.

    • Search Google Scholar
    • Export Citation
  • Green, M., C. W. Rowley, and G. Haller, 2007: Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech., 572, 111120, https://doi.org/10.1017/S0022112006003648.

    • Search Google Scholar
    • Export Citation
  • Hall, C. A., and R. R. Leben, 2016: Observational evidence of seasonality in the timing of Loop Current eddy separation. Dyn. Atmos. Oceans, 76, 240267, https://doi.org/10.1016/j.dynatmoce.2016.06.002.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D, 149, 248277, https://doi.org/10.1016/S0167-2789(00)00199-8.

    • Search Google Scholar
    • Export Citation
  • Haller, G., and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D, 147, 352370, https://doi.org/10.1016/S0167-2789(00)00142-1.

    • Search Google Scholar
    • Export Citation
  • Hamilton, P., K. A. Donohue, R. R. Leben, A. Lugo-Fernández, and R. E. Green, 2011: Loop Current observations during spring and summer of 2010: Description and historical perspective. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 117–130.

  • Heimbach, P., C. Hill, and R. Giering, 2002: Automatic generation of efficient adjoint code for a parallel Navier-Stokes solver. Computational Science—ICCS 2002, J. J. Dongarra, P. M. A. Sloot, and C. J. K. Tan, Eds., Lecture Notes in Computer Science, Vol. 2330, Springer-Verlag, 1019–1028.

  • Heimbach, P., D. Menemenlis, M. Losch, J.-M. Campin, and C. Hill, 2010: On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea-ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modell., 33, 145158, https://doi.org/10.1016/j.ocemod.2010.02.002.

    • Search Google Scholar
    • Export Citation
  • Hiron, L., B. J. de la Cruz, and L. K. Shay, 2020: Evidence of Loop Current frontal eddy intensification through local linear and nonlinear interactions with the Loop Current. J. Geophys. Res. Oceans, 125, e2019JC015533, https://doi.org/10.1029/2019JC015533.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, A. Kohl, and D. Stammer, 2005: Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Quart. J. Roy. Meteor. Soc., 131, 36593682, https://doi.org/10.1256/qj.05.97.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, S. Y. Kim, G. Forget, A. Kohl, and E. Terril, 2009: Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego. Dyn. Atmos. Oceans, 48, 175197, https://doi.org/10.1016/j.dynatmoce.2008.11.005.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, and P. Heimbach, 2010: An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. J. Geophys. Res., 115, C03001, https://doi.org/10.1029/2009JC005437.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson, B. Cornuelle, A. Köhl, and P. Heimbach, 2013: A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn. Atmos. Oceans, 63, 123, https://doi.org/10.1016/j.dynatmoce.2013.03.002.

    • Search Google Scholar
    • Export Citation
  • Huang, H. S., N. D. Walker, Y. Hsueh, Y. Chao, and R. R. Leben, 2013: An analysis of Loop Current frontal eddies in a 1/6° Atlantic Ocean model simulation. J. Phys. Oceanogr., 43, 19241939, https://doi.org/10.1175/JPO-D-12-0227.1.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., J. Sheinbaum, B. Barnier, and J.-M. Molines, 2009: The mesoscale variability in the Caribbean Sea. Part II: Energy sources. Ocean Modell., 26, 226239, https://doi.org/10.1016/j.ocemod.2008.10.006.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., J. Sheinbaum, B. Barnier, J. M. Molines, and J. Candela, 2012: Seasonal and interannual modulation of the eddy kinetic energy in the Caribbean Sea. J. Phys. Oceanogr., 42, 20412055, https://doi.org/10.1175/JPO-D-12-048.1.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., J. Ochoa, J. Sheinbaum, E. Pallas-Sanz, F. Andrade-Canto, J. Candela, and J.-M. Molines, 2016: Loop Current frontal eddies: Formation along the Campeche Bank and impact of coastally trapped waves. J. Phys. Oceanogr., 46, 33393363, https://doi.org/10.1175/JPO-D-16-0052.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., D. Stammer, and B. Cornuelle, 2007: Interannual to decadal changes in the ECCO global synthesis. J. Phys. Oceanogr., 37, 313337, https://doi.org/10.1175/JPO3014.1.

    • Search Google Scholar
    • Export Citation
  • Kourafalou, V., Y. Androulidakis, M. LeHénaff, and H. Kang, 2017: The dynamics of Cuba anticyclones (CubANs) and interaction with the Loop Current/Florida Current system. J. Geophys. Res. Atmos., 122, 78977923, https://doi.org/10.1002/2017JC012928.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Leben, R., 2005: Altimeter-derived Loop Current metrics. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 181–201.

  • Le Dimet, F.-X, and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110, https://doi.org/10.3402/tellusa.v38i2.11706.

    • Search Google Scholar
    • Export Citation
  • Le Henaff, M., V. H. Kourafalou, Y. Morel, and A. Srinivasan, 2012: Simulating the dynamics and intensification of cyclonic Loop Current frontal eddies in the Gulf of Mexico. J. Geophys. Res., 117, C02034, https://doi.org/10.1029/2011JC007279.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 2007: Adaptive modeling, adaptive data assimilation and adaptive sampling. Physica D, 230, 172196, https://doi.org/10.1016/j.physd.2007.02.014.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lugo-Fernandez, A., R. R. Leben, and C. A. Hall, 2016: Kinematic metrics of the Loop Current in the Gulf of Mexico from satellite altimetry. Dyn. Atmos. Oceans, 76, 268282, https://doi.org/10.1016/j.dynatmoce.2016.01.002.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Mathur, M., G. Haller, T. Peacock, J. E. Ruppert-Felsot, and H. L. Swinney, 2007: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett., 98, 144502, https://doi.org/10.1103/PhysRevLett.98.144502.

    • Search Google Scholar
    • Export Citation
  • Maul, G., 1977: The annual cycle of the Loop Current. Part I: Observations during a one-year time series. J. Mar. Res., 35, 2747.

  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, https://doi.org/10.1175/MWR2912.1.

    • Search Google Scholar
    • Export Citation
  • Molina, M. J., R. P. Timmer, and J. T. Allen, 2016: Importance of the Gulf of Mexico as a climate driver for U.S. severe thunderstorm activity. Geophys. Res. Lett., 43, 12 29512 304, https://doi.org/10.1002/2016GL071603.

    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., and J. Morrison, 1988: The separation of the Yucatan Current from the Campeche Bank and the intrusion of the Loop Current into the Gulf of Mexico. J. Geophys. Res., 93, 10 64510 655, https://doi.org/10.1029/JC093iC09p10645.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., 2004: Vorticity flux through the Yucatan Channel and Loop Current variability in the Gulf of Mexico. J. Geophys. Res., 109, C10004, https://doi.org/10.1029/2004JC002400.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., H.-C. Lee, and W. J. Schmitz Jr., 2003: Effects of winds and Caribbean eddies on the frequency of the Loop Current eddy shedding: A numerical model study. J. Geophys. Res., 108, 3324, https://doi.org/10.1029/2002JC001698.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and Coauthors, 2013: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40, 61716175, https://doi.org/10.1002/2013GL058624.

    • Search Google Scholar
    • Export Citation
  • Roffer, M. A., G. Gawlikowski, F. Muller-Karger, K. Schaudt, M. Upton, C. Wall, and D. Westhaver, 2006: Use of thermal infrared remote sensing data for fisheries, environmental monitoring, oil and gas exploration, and ship routing. 2006 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H32D-07.

  • Rudnick, D. L., G. Gopalakrishnan, and B. D. Cornuelle, 2015: Cyclonic eddies in the Gulf of Mexico: Observations by underwater gliders and simulations by numerical model. J. Phys. Oceanogr., 45, 313326, https://doi.org/10.1175/JPO-D-14-0138.1.

    • Search Google Scholar
    • Export Citation
  • Scharroo, R., E. Leuliette, J. Lillibridge, D. Byrne, M. Naeije, and G. Mitchum, 2013: RADS: Consistent multi-mission products. Proc. Symp. on 20 Years of Progress in Radar Altimetry, Venice, Italy, European Space Agency Special Publication, ESA SP-710, https://adsabs.harvard.edu/full/2013ESASP.710E..69S.

  • Schmitz, W., 2005: Cyclones and westward propagation in the shedding of anticyclonic rings from the Loop Current. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 241–261, https://doi.org/10.1029/161GM18.

  • Sheinbaum, J., J. Candela, A. Badan, and J. Ochoa, 2002: Flow structure and transport in the Yucatan Channel. Geophys. Res. Lett., 29, 1040, https://doi.org/10.1029/2001GL013990.

    • Search Google Scholar
    • Export Citation
  • Sheinbaum, J., G. Athie, J. Candela, J. Ochoa, and A. Romero-Arteaga, 2016: Structure and variability of the Yucatan and Loop Currents along the slope and shelf break of the Yucatan Channel and Campeche Bank. Dyn. Atmos. Oceans, 76, 217239, https://doi.org/10.1016/j.dynatmoce.2016.08.001.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107, 3118, https://doi.org/10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., and J. C. Evans, 1983: On the variability of the Loop Current in the Gulf of Mexico. J. Mar. Res., 41, 639653, https://doi.org/10.1357/002224083788520487.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., and R. Leben, 2000: Frequency of ring separations from the Loop Current in the Gulf of Mexico: A revised estimate. J. Phys. Oceanogr., 30, 18141819, https://doi.org/10.1175/1520-0485(2000)030<1814:FORSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verdy, A., B. Cornuelle, M. R. Mazloff, and D. L. Rudnick, 2017: Estimation of the tropical Pacific Ocean state 2010–13. J. Atmos. Oceanic Technol., 34, 15011517, https://doi.org/10.1175/JTECH-D-16-0223.1.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and Y. Liu, 2017: On the Loop Current penetration into the Gulf of Mexico. J. Geophys. Res. Oceans, 122, 96799694, https://doi.org/10.1002/2017JC013330.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Wunsch, C., and P. Heimback, 2007: Practical global oceanic state estimation. Phys. D, 230, 197208, https://doi.org/10.1016/j.physd.2006.09.040.

    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., and P. Martin, 2014: On sensitivity analysis within the 4DVAR framework. Mon. Wea. Rev., 142, 774787, https://doi.org/10.1175/MWR-D-13-00123.1.

    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., S. Morey, and J. O’Brien, 2003: Cyclonic eddies northeast of the Campeche Bank from altimetry data. J. Phys. Oceanogr., 33, 623629, https://doi.org/10.1175/1520-0485(2003)033<0623:CENOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 254 254 15
Full Text Views 42 42 9
PDF Downloads 53 53 11

Impact of Yucatan Channel Subsurface Velocity Observations on the Gulf of Mexico State Estimates

Heriberto J. VazquezaScripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Heriberto J. Vazquez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5198-4359
,
Ganesh GopalakrishnanaScripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Ganesh Gopalakrishnan in
Current site
Google Scholar
PubMed
Close
, and
Julio SheinbaumbPhysical Oceanography, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico

Search for other papers by Julio Sheinbaum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Gulf of Mexico (GoM) surface circulation variability is dominated by the Loop Current (LC) and the episodically released anticyclonic Loop Current eddies (LCEs). The Yucatan Current feeds the LC through the Yucatan Channel (YC), and its flow structure at the YC is hypothesized to affect the LC evolution critically. This study examines the impact of assimilating YC subsurface velocity observations from a tall mooring array across the YC on the GoM circulation. State estimates and forecasts of the LC circulation were produced using a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint-based four-dimensional variational (4DVAR) assimilation system. The estimates were constrained by combinations of the YC observations and satellite-derived sea surface height (SSH) and sea surface temperature (SST). The results show that assimilation of both moored and satellite data improves the model hindcasts and forecasts for all LC phases. Additionally, one realization of the state estimate that assimilates only moored data matches the LCE detachment timing with that of AVISO SSH. Observations from the moorings close to the Yucatan Peninsula significantly impact the LCE detachment. A finite-time Lyapunov exponent analysis reveals the differences among the assimilation experiments, such as eddylike structures intruding into the GoM through the YC, and its relation to the typical LC sudden growth. Finally, an adjoint sensitivity analysis is used to verify the dynamic link between the LC extension and the intrusion of eddylike structures into the GoM.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Heriberto J. Vazquez, hvazquezperalta@ucsd.edu

Abstract

The Gulf of Mexico (GoM) surface circulation variability is dominated by the Loop Current (LC) and the episodically released anticyclonic Loop Current eddies (LCEs). The Yucatan Current feeds the LC through the Yucatan Channel (YC), and its flow structure at the YC is hypothesized to affect the LC evolution critically. This study examines the impact of assimilating YC subsurface velocity observations from a tall mooring array across the YC on the GoM circulation. State estimates and forecasts of the LC circulation were produced using a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint-based four-dimensional variational (4DVAR) assimilation system. The estimates were constrained by combinations of the YC observations and satellite-derived sea surface height (SSH) and sea surface temperature (SST). The results show that assimilation of both moored and satellite data improves the model hindcasts and forecasts for all LC phases. Additionally, one realization of the state estimate that assimilates only moored data matches the LCE detachment timing with that of AVISO SSH. Observations from the moorings close to the Yucatan Peninsula significantly impact the LCE detachment. A finite-time Lyapunov exponent analysis reveals the differences among the assimilation experiments, such as eddylike structures intruding into the GoM through the YC, and its relation to the typical LC sudden growth. Finally, an adjoint sensitivity analysis is used to verify the dynamic link between the LC extension and the intrusion of eddylike structures into the GoM.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Heriberto J. Vazquez, hvazquezperalta@ucsd.edu
Save