Modifying the Mixed Layer Eddy Parameterization to Include Frontogenesis Arrest by Boundary Layer Turbulence

Abigail S. Bodner aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Abigail S. Bodner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1333-2840
,
Baylor Fox-Kemper aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
,
Leah Johnson bApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Leah Johnson in
Current site
Google Scholar
PubMed
Close
,
Luke P. Van Roekel cTheoretical Division, Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Luke P. Van Roekel in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams dDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
Peter P. Sullivan eNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter P. Sullivan in
Current site
Google Scholar
PubMed
Close
,
Paul S. Hall aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Paul S. Hall in
Current site
Google Scholar
PubMed
Close
, and
Jihai Dong fSchool of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
gSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China

Search for other papers by Jihai Dong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Current submesoscale restratification parameterizations, which help set mixed layer depth in global climate models, depend on a simplistic scaling of frontal width shown to be unreliable in several circumstances. Observations and theory indicate that frontogenesis is common, but stable frontal widths arise in the presence of turbulence and instabilities that participate in keeping fronts at the scale observed, the arrested scale. Here we propose a new scaling law for arrested frontal width as a function of turbulent fluxes via the turbulent thermal wind (TTW) balance. A variety of large-eddy simulations (LES) of strain-induced fronts and TTW-induced filaments are used to evaluate this scaling. Frontal width given by boundary layer parameters drawn from observations in the General Ocean Turbulence Model (GOTM) are found qualitatively consistent with the observed range in regions of active submesoscales. The new arrested front scaling is used to modify the mixed layer eddy restratification parameterization commonly used in coarse-resolution climate models. Results in CESM-POP2 reveal the climate model’s sensitivity to the parameterization update and changes in model biases. A comprehensive multimodel study is in planning for further testing.

Significance Statement

The ocean surface plays a major role in the climate system, primarily through exchange in properties, such as in heat and carbon, between the ocean and atmosphere. Accurate model representation of ocean surface processes is crucial for climate simulations, yet they tend to be too small, fast, or complex to be resolved. Significant efforts lie in approximating these small-scale processes using reduced expressions that are solved by the model. This study presents an improved representation of the ocean surface in climate models by capturing some of the synergy that has been missing between the processes that define it. Results encourage further testing across a wider range of models to comprehensively evaluate the effects of this adjustment in climate simulations.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Bodner’s current affiliation: Courant Institute of Mathematical Sciences, New York University, New York, New York.

Corresponding author: Abigail S. Bodner, abigail.bodner@nyu.edu

Abstract

Current submesoscale restratification parameterizations, which help set mixed layer depth in global climate models, depend on a simplistic scaling of frontal width shown to be unreliable in several circumstances. Observations and theory indicate that frontogenesis is common, but stable frontal widths arise in the presence of turbulence and instabilities that participate in keeping fronts at the scale observed, the arrested scale. Here we propose a new scaling law for arrested frontal width as a function of turbulent fluxes via the turbulent thermal wind (TTW) balance. A variety of large-eddy simulations (LES) of strain-induced fronts and TTW-induced filaments are used to evaluate this scaling. Frontal width given by boundary layer parameters drawn from observations in the General Ocean Turbulence Model (GOTM) are found qualitatively consistent with the observed range in regions of active submesoscales. The new arrested front scaling is used to modify the mixed layer eddy restratification parameterization commonly used in coarse-resolution climate models. Results in CESM-POP2 reveal the climate model’s sensitivity to the parameterization update and changes in model biases. A comprehensive multimodel study is in planning for further testing.

Significance Statement

The ocean surface plays a major role in the climate system, primarily through exchange in properties, such as in heat and carbon, between the ocean and atmosphere. Accurate model representation of ocean surface processes is crucial for climate simulations, yet they tend to be too small, fast, or complex to be resolved. Significant efforts lie in approximating these small-scale processes using reduced expressions that are solved by the model. This study presents an improved representation of the ocean surface in climate models by capturing some of the synergy that has been missing between the processes that define it. Results encourage further testing across a wider range of models to comprehensively evaluate the effects of this adjustment in climate simulations.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Bodner’s current affiliation: Courant Institute of Mathematical Sciences, New York University, New York, New York.

Corresponding author: Abigail S. Bodner, abigail.bodner@nyu.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.91 MB)
Save
  • Bachman, S., and B. Fox-Kemper, 2013: Eddy parameterization challenge suite I: Eady spindown. Ocean Modell., 64, 1228, https://doi.org/10.1016/j.ocemod.2012.12.003.

    • Search Google Scholar
    • Export Citation
  • Bachman, S., B. Fox-Kemper, and F. O. Bryan, 2015: A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection. Ocean Modell., 86, 114, https://doi.org/10.1016/j.ocemod.2014.11.006.

    • Search Google Scholar
    • Export Citation
  • Bachman, S., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, https://doi.org/10.1016/j.ocemod.2016.12.003.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Bodner, A. S., and B. Fox-Kemper, 2020: A breakdown in potential vorticity estimation delineates the submesoscale-to-turbulence boundary in large eddy simulations. J. Adv. Model. Earth Syst., 12, e2020MS002049, https://doi.org/10.1029/2020MS002049.

    • Search Google Scholar
    • Export Citation
  • Bodner, A. S., B. Fox-Kemper, L. P. Van Roekel, J. C. McWilliams, and P. P. Sullivan, 2020: A perturbation approach to understanding the effects of turbulence on frontogenesis. J. Fluid Mech., 883, A25, https://doi.org/10.1017/jfm.2019.804.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018a: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018b: Note on the rate of restratification in the baroclinic spindown of fronts. J. Phys. Oceanogr., 48, 15431553, https://doi.org/10.1175/JPO-D-17-0175.1.

    • Search Google Scholar
    • Export Citation
  • Calvert, D., G. Nurser, M. J. Bell, and B. Fox-Kemper, 2020: The impact of a parameterisation of submesoscale mixed layer eddies on mixed layer depths in the NEMO ocean model. Ocean Modell., 154, 101678, https://doi.org/10.1016/j.ocemod.2020.101678.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and W. S. Kessler, 2009: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr., 39, 12001215, https://doi.org/10.1175/2008JPO4064.1.

    • Search Google Scholar
    • Export Citation
  • Crowe, M., and J. R. Taylor, 2020: The effects of surface wind stress and buoyancy flux on the evolution of a front in a turbulent thermal wind balance. Fluids, 5, 87, https://doi.org/10.3390/fluids5020087.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. A. Barth, M. D. Levine, and J. A. Austin, 2008: Observations of mixed layer restratification by onshore surface transport following wind reversal in a coastal upwelling region. J. Geophys. Res., 113, C01010, https://doi.org/10.1029/2007JC004128.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Dauhajre, D. P., and J. C. McWilliams, 2018: Diurnal evolution of submesoscale front and filament circulations. J. Phys. Oceanogr., 48, 23432361, https://doi.org/10.1175/JPO-D-18-0143.1.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 26492667, https://doi.org/10.1175/JPO-D-20-0043.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2021: The scale and activity of symmetric instability estimated from a global submesoscale-permitting ocean model. J. Phys. Oceanogr., 51, 16551670, https://doi.org/10.1175/JPO-D-20-0159.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2019: Challenges and prospects in ocean circulation models. Front. Mar. Sci., 6, 65, https://doi.org/10.3389/fmars.2019.00065.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., L. Johnson, and F. Qiao, 2022: Ocean near-surface layers. Ocean Mixing, M. Meredith and A. Naveira Garabato, Eds., Elsevier, 6594.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and J. W. Loder, 1981: Dynamical aspects of shallow sea fronts. Philos. Trans. Roy. Soc., A302, 563581, https://doi.org/10.1098/rsta.1981.0183.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. C. McWilliams, and C. Snyder, 1994: Scaling analysis of curved fronts. Validity of the balance equations and semigeostrophy. J. Atmos. Sci., 51, 160163, https://doi.org/10.1175/1520-0469(1994)051<0160:SAOCFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the gulf stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Search Google Scholar
    • Export Citation
  • Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 30333056, https://doi.org/10.1175/JPO-D-15-0044.1.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P., M. C. Gregg, and M. H. Alford, 2006: Sub-mesoscale lateral density structure in the oceanic surface mixed layer. Geophys. Res. Lett., 33, L22604, https://doi.org/10.1029/2006GL026797.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, L., C. M. Lee, E. A. D’Asaro, L. Thomas, and A. Shcherbina, 2020: Restratification at a California current upwelling front. Part I: Observations. J. Phys. Oceanogr., 50, 14551472, https://doi.org/10.1175/JPO-D-19-0203.1.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106, https://doi.org/10.3402/tellusa.v19i1.9753.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Levy, M., G. Danabasoglu, S. Griffies, T. Ringler, A. Adcroft, R. Hallberg, D. Jacobsen, and W. Large, 2014: Community ocean vertical mixing (CVMix) parameterizations. Ocean Model Working Group Meeting, Boulder, CO, UCAR, https://www.cesm.ucar.edu/events/wg-meetings/2014/presentations/omwg/levy.pdf.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 28632886, https://doi.org/10.1175/JPO-D-17-0085.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2019: Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Search Google Scholar
    • Export Citation
  • Li, Q., J. Bruggeman, H. Burchard, K. Klingbeil, L. Umlauf, and K. Bolding, 2021: Integrating CVMIX into GOTM (v6. 0): A consistent framework for testing, comparing, and applying ocean mixing schemes. Geosci. Model Dev., 14, 42614282, https://doi.org/10.5194/gmd-14-4261-2021.

    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., and Coauthors, 2016: Adrift upon a salinity-stratified sea: A view of upper-ocean processes in the bay of bengal during the southwest monsoon. Oceanography, 29, 134145, https://doi.org/10.5670/oceanog.2016.46.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2016: The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci., 8, 161184, https://doi.org/10.1146/annurev-marine-010814-015912.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, https://doi.org/10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., 2017: Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391432, https://doi.org/10.1017/jfm.2017.294.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2021: Oceanic frontogenesis. Annu. Rev. Mar. Sci., 13, 227253, https://doi.org/10.1146/annurev-marine-032320-120725.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and J. M. Molemaker, 2011: Baroclinic frontal arrest: A sequel to unstable frontogenesis. J. Phys. Oceanogr., 41, 601619, https://doi.org/10.1175/2010JPO4493.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., M. J. Molemaker, and E. I. Olafsdottir, 2009: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, https://doi.org/10.1175/2009JPO4186.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, J. M. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, https://doi.org/10.1175/JPO-D-14-0211.1.

    • Search Google Scholar
    • Export Citation
  • Mironov, D., A. Terzhevik, G. Kirillin, T. Jonas, J. Malm, and D. Farmer, 2002: Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J. Geophys. Res., 107, 3032, https://doi.org/10.1029/2001JC000892.

    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, https://doi.org/10.1029/2005JC002964.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and J. W. Zhang, 2000: Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res., 105, 21 85121 868, https://doi.org/10.1029/2000JC900018.

    • Search Google Scholar
    • Export Citation
  • Olita, A., and Coauthors, 2017: Frontal dynamics boost primary production in the summer stratified mediterranean sea. Ocean Dyn., 67, 767782, https://doi.org/10.1007/s10236-017-1058-z.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., T. Iliescu, P. F. Fischer, A. Srinivasan, and J. Duan, 2007: Large eddy simulation of stratified mixing in two-dimensional dam-break problem in a rectangular enclosed domain. Ocean Modell., 16, 106140, https://doi.org/10.1016/j.ocemod.2006.08.006.

    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., T. M. S. Johnston, and D. L. Rudnick, 2010: Frontal dynamics in a California current system shallow front: 1. Frontal processes and tracer structure. J. Geophys. Res., 115, C12067, https://doi.org/10.1029/2009JC006032.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and Coauthors, 2018: Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon. J. Phys. Oceanogr., 48, 479509, https://doi.org/10.1175/JPO-D-16-0283.1.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., and Coauthors, 2020: Monitoring intense oceanic fronts using sea surface roughness: Satellite, airplane, and in situ comparison. J. Geophys. Res. Oceans, 125, e2019JC015704, https://doi.org/10.1029/2019JC015704.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., and R. Hallberg, 2018: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations. Ocean Modell., 132, 112129, https://doi.org/10.1016/j.ocemod.2018.10.004.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51, 33733398, https://doi.org/10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, https://doi.org/10.1175/JPO-D-10-05016.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res. Oceans, 121, 908933, https://doi.org/10.1002/2015JC011089.

    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512553, https://doi.org/10.1017/jfm.2019.655.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res. Oceans, 121, 35973624, https://doi.org/10.1002/2015JC011563.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1994: Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr., 24, 14191424, https://doi.org/10.1175/1520-0485(1994)024<1419:MLRDTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2011: Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett., 38, L23601, https://doi.org/10.1029/2011GL049312.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. C., and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229267, https://doi.org/10.1017/S0022112002007838.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the gulf stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., 2000: Ekman layers and two-dimensional frontogenesis in the upper ocean. J. Geophys. Res., 105, 64376451, https://doi.org/10.1029/1999JC900336.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 496 pp.

  • Timmermans, M.-L., and P. Winsor, 2013: Scales of horizontal density structure in the Chukchi Sea surface layer. Cont. Shelf Res., 52, 3945, https://doi.org/10.1016/j.csr.2012.10.015.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2020: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 36433708, https://doi.org/10.5194/gmd-13-3643-2020.

    • Search Google Scholar
    • Export Citation
  • Ullman, D. S., P. C. Cornillon, and Z. Shan, 2007: On the characteristics of subtropical fronts in the North Atlantic. J. Geophys. Res., 112, C01010, https://doi.org/10.1029/2006JC003601.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2005: Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res., 25, 795827, https://doi.org/10.1016/j.csr.2004.08.004.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., P. E. Hamlington, and B. Fox-Kemper, 2012: Multiscale simulations of Langmuir cells and submesoscale eddies using XSEDE resources. Proc. XSEDE12 First Conf. of the Extreme Science and Engineering Discovery Environment, Chicago, IL, ACM, 20, https://doi.org/10.1145/2335755.2335816.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., and Coauthors, 2018: The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. J. Adv. Model. Earth Syst., 10, 26472685, https://doi.org/10.1029/2018MS001336.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., L. N. Thomas, J. Gula, and J. C. McWilliams, 2018: Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr., 48, 21412165, https://doi.org/10.1175/JPO-D-17-0219.1.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1994: Global ocean wave statistics obtained from satellite observations. Appl. Ocean Res., 16, 235248, https://doi.org/10.1016/0141-1187(94)90023-X.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1353 879 57
Full Text Views 550 366 32
PDF Downloads 611 460 43