• Aluie, H., M. Hecht, and G. K. Vallis, 2018: Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach. J. Phys. Oceanogr., 48, 225244, https://doi.org/10.1175/JPO-D-17-0100.1.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1977: The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech., 81, 209223, https://doi.org/10.1017/S0022112077001980.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • Dauhajre, D. P., J. C. McWilliams, and Y. Uchiyama, 2017: Submesoscale coherent structures on the continental shelf. J. Phys. Oceanogr., 47, 29492976, https://doi.org/10.1175/JPO-D-16-0270.1.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, https://doi.org/10.1029/94JC01894.

    • Search Google Scholar
    • Export Citation
  • Eyink, G. L., 2005: Locality of turbulent cascades. Physica D, 207, 91116, https://doi.org/10.1016/j.physd.2005.05.018.

  • Germano, M., 1992: Turbulence: The filtering approach. J. Fluid Mech., 238, 325336, https://doi.org/10.1017/S0022112092001733.

  • Grant, A. L., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Search Google Scholar
    • Export Citation
  • Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 30333056, https://doi.org/10.1175/JPO-D-15-0044.1.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Search Google Scholar
    • Export Citation
  • Hypolite, D., L. Romero, J. C. McWilliams, and D. P. Dauhajre, 2021: Surface gravity wave effects on submesoscale currents in the open ocean. J. Phys. Oceanogr., 51, 33653383, https://doi.org/10.1175/JPO-D-20-0306.1.

    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., 2017: Vertical velocity in the gray zone. J. Adv. Model. Earth Syst., 9, 23042316, https://doi.org/10.1002/2017MS001059.

    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, https://doi.org/10.1126/science.87.2250.119.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Search Google Scholar
    • Export Citation
  • Li, K., Z. Zhang, G. Chini, and G. Flierl, 2012: Langmuir circulation: An agent for vertical restratification? J. Phys. Oceanogr., 42, 19451958, https://doi.org/10.1175/JPO-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 28632886, https://doi.org/10.1175/JPO-D-17-0085.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2019: Comparing ocean surface boundary vertical mixing schemes with Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, https://doi.org/10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., 2018: Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech., 843, 479517, https://doi.org/10.1017/jfm.2018.158.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464490, https://doi.org/10.1017/jfm.2013.348.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178, https://doi.org/10.1017/S0022112004009358.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, https://doi.org/10.1175/JPO-D-13-0122.1.

    • Search Google Scholar
    • Export Citation
  • Ménesguen, C., S. Le Gentil, P. Marchesiello, and N. Ducousso, 2018: Destabilization of an oceanic meddy-like vortex: Energy transfers and significance of numerical settings. J. Phys. Oceanogr., 48, 11511168, https://doi.org/10.1175/jpo-d-17-0126.1.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., J. Dudhia, D. Gill, J. Klemp, and W. Skamarock, 1998: Design of a next-generation regional weather research and forecast model. Towards Teracomputing, N. Kreitz and W. Zwieflhofer, Eds., World Scientific, 117–124.

  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Search Google Scholar
    • Export Citation
  • Romero, L., Y. Uchiyama, J. C. Ohlmann, J. C. McWilliams, and D. A. Siegel, 2013: Simulations of nearshore particle-pair dispersion in Southern California. J. Phys. Oceanogr., 43, 18621879, https://doi.org/10.1175/JPO-D-13-011.1.

    • Search Google Scholar
    • Export Citation
  • Romero, L., L. Lenain, and W. K. Melville, 2017: Observations of surface wave–current interaction. J. Phys. Oceanogr., 47, 615632, https://doi.org/10.1175/JPO-D-16-0108.1.

    • Search Google Scholar
    • Export Citation
  • Romero, L., D. Hypolite, and J. C. McWilliams, 2020: Submesoscale current effects on surface waves. Ocean Modell., 153, 101662, https://doi.org/10.1016/j.ocemod.2020.101662.

    • Search Google Scholar
    • Export Citation
  • Romero, L., D. Hypolite, and J. C. McWilliams, 2021: Representing wave effects on currents. Ocean Modell., 167, 101873, https://doi.org/10.1016/j.ocemod.2021.101873.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., J. M. Molemaker, N. Ducousso, and T. Dubos, 2017: Compact symmetric Poisson equation discretization for non-hydrostatic sigma coordinates ocean model. Ocean Modell., 118, 107117, https://doi.org/10.1016/j.ocemod.2017.09.001.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, R. J. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shrestha, K., W. Anderson, A. Tejada-Martinez, and J. Kuehl, 2019: Orientation of coastal-zone Langmuir cells forced by wind, wave and mean current at variable obliquity. J. Fluid Mech., 879, 716743, https://doi.org/10.1017/jfm.2019.683.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, https://doi.org/10.1175/JPO-D-10-05016.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res. Oceans, 121, 908933, https://doi.org/10.1002/2015JC011089.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., R. Barkan, and J. C. McWilliams, 2022: A forward energy flux at submesoscales driven by frontogenesis. J. Phys. Oceanogr., https://doi.org/10.1175/JPO-D-22-0001.1, in press.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512553, https://doi.org/10.1017/jfm.2019.655.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Sun, D., and Coauthors, 2020: Diurnal cycling of submesoscale dynamics: Lagrangian implications in drifter observations and model simulations of the northern Gulf of Mexico. J. Phys. Oceanogr., 50, 16051623, https://doi.org/10.1175/JPO-D-19-0241.1.

    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Search Google Scholar
    • Export Citation
  • Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res. Oceans, 121, 35973624, https://doi.org/10.1002/2015JC011563.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

  • Towns, J., and Coauthors, 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin, 2010: Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modell., 34, 1635, https://doi.org/10.1016/j.ocemod.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Vrećica, T., N. Pizzo, and L. Lenain, 2022: Observations of strongly modulated surface wave and wave breaking statistics at a submesoscale front. J. Phys. Oceanogr., 52, 289304, https://doi.org/10.1175/JPO-D-21-0125.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., F. Feddersen, and S. N. Giddings, 2021: Characteristics and dynamics of density fronts over the inner to midshelf under weak wind conditions. J. Phys. Oceanogr., 51, 789808, https://doi.org/10.1175/JPO-D-20-0162.1.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita”. J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 576 576 17
Full Text Views 183 183 15
PDF Downloads 254 254 25

Langmuir Circulations Transfer Kinetic Energy from Submesoscales and Larger Scales to Dissipative Scales

Delphine HypoliteaDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Delphine Hypolite in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2582-188X
,
Leonel RomerobDepartment of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Leonel Romero in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliamsaDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
Daniel P. DauhajreaDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Daniel P. Dauhajre in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface gravity wave effects on currents (WEC) cause the emergence of Langmuir cells (LCs) in a suite of high horizontal resolution (Δx = 30 m), realistic oceanic simulations in the open ocean of central California. During large wave events, LCs develop widely but inhomogeneously, with larger vertical velocities in a deeper mixed layer. They interact with extant submesoscale currents. A 550-m horizontal spatial filter separates the signals of LCs and of submesoscale and larger-scale currents. The LCs have a strong velocity variance with small density gradient variance, while submesoscale currents are large in both. Using coarse graining, we show that WEC induces a forward cascade of kinetic energy in the upper ocean up to at least a 5-km scale. This is due to strong positive vertical Reynolds stress (in both the Eulerian and the Stokes drift energy production terms) at all resolved scales in the WEC solutions, associated with large vertical velocities. The spatial filter elucidates the role of LCs in generating the shear production on the vertical scale of Stokes drift (10 m), while submesoscale currents affect both the horizontal and vertical energy fluxes throughout the mixed layer (50–80 m). There is a slightly weaker forward cascade associated with nonhydrostatic LCs (by 13% in average) than in the hydrostatic case, but overall the simulation differences are small. A vertical mixing scheme K-profile parameterization (KPP) partially augmented by Langmuir turbulence yields wider LCs, which can lead to lower surface velocity gradients compared to solutions using the standard KPP scheme.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Delphine Hypolite, dhypolite@atmos.ucla.edu

Abstract

Surface gravity wave effects on currents (WEC) cause the emergence of Langmuir cells (LCs) in a suite of high horizontal resolution (Δx = 30 m), realistic oceanic simulations in the open ocean of central California. During large wave events, LCs develop widely but inhomogeneously, with larger vertical velocities in a deeper mixed layer. They interact with extant submesoscale currents. A 550-m horizontal spatial filter separates the signals of LCs and of submesoscale and larger-scale currents. The LCs have a strong velocity variance with small density gradient variance, while submesoscale currents are large in both. Using coarse graining, we show that WEC induces a forward cascade of kinetic energy in the upper ocean up to at least a 5-km scale. This is due to strong positive vertical Reynolds stress (in both the Eulerian and the Stokes drift energy production terms) at all resolved scales in the WEC solutions, associated with large vertical velocities. The spatial filter elucidates the role of LCs in generating the shear production on the vertical scale of Stokes drift (10 m), while submesoscale currents affect both the horizontal and vertical energy fluxes throughout the mixed layer (50–80 m). There is a slightly weaker forward cascade associated with nonhydrostatic LCs (by 13% in average) than in the hydrostatic case, but overall the simulation differences are small. A vertical mixing scheme K-profile parameterization (KPP) partially augmented by Langmuir turbulence yields wider LCs, which can lead to lower surface velocity gradients compared to solutions using the standard KPP scheme.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Delphine Hypolite, dhypolite@atmos.ucla.edu
Save