Surface Heating Steers Planetary-Scale Ocean Circulation

Dhruv Bhagtani aResearch School of Earth Sciences and ARC Center of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Dhruv Bhagtani in
Current site
Google Scholar
PubMed
Close
,
Andrew McC. Hogg aResearch School of Earth Sciences and ARC Center of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
,
Ryan M. Holmes bSchool of Geosciences, University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Ryan M. Holmes in
Current site
Google Scholar
PubMed
Close
, and
Navid C. Constantinou aResearch School of Earth Sciences and ARC Center of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Navid C. Constantinou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Gyres are central features of large-scale ocean circulation and are involved in transporting tracers such as heat, nutrients, and carbon dioxide within and across ocean basins. Traditionally, the gyre circulation is thought to be driven by surface winds and quantified via Sverdrup balance, but it has been proposed that surface buoyancy fluxes may also contribute to gyre forcing. Through a series of eddy-permitting global ocean model simulations with perturbed surface forcing, the relative contribution of wind stress and surface heat flux forcing to the large-scale ocean circulation is investigated, focusing on the subtropical gyres. In addition to gyre strength being linearly proportional to wind stress, it is shown that the gyre circulation is strongly impacted by variations in the surface heat flux (specifically, its meridional gradient) through a rearrangement of the ocean’s buoyancy structure. On shorter time scales (∼10 years), the gyre circulation anomalies are proportional to the magnitude of the surface heat flux gradient perturbation, with up to ∼0.15 Sv (1 Sv ≡ 106 m3 s−1) anomaly induced per watt per square meter change in the surface heat flux. On time scales longer than a decade, the gyre response to surface buoyancy flux gradient perturbations becomes nonlinear as ocean circulation anomalies feed back onto the buoyancy structure induced by the surface buoyancy fluxes. These interactions complicate the development of a buoyancy-driven theory for the gyres to complement the Sverdrup relation. The flux-forced simulations underscore the importance of surface buoyancy forcing in steering the large-scale ocean circulation.

Significance Statement

Ocean gyres are large swirling circulation features that redistribute heat across ocean basins. It is commonly believed that surface winds are the sole driver of ocean gyres, but recent literature suggests that other mechanisms could also be influential. We perform a series of numerical simulations in which we artificially change either the winds or the heating at the ocean’s surface and investigate how each factor independently affects the ocean gyres. We find that gyres are steered by both winds and surface heating, and that the ocean circulation responds differently to heating on short and long time scales. In addition, the circulation depends on where the heating is applied at the ocean’s surface. Through these simulations, we argue that a complete theory about ocean gyres must consider heating at the ocean’s surface as a possible driver, in addition to the winds.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dhruv Bhagtani, dhruv.bhagtani@anu.edu.au

Abstract

Gyres are central features of large-scale ocean circulation and are involved in transporting tracers such as heat, nutrients, and carbon dioxide within and across ocean basins. Traditionally, the gyre circulation is thought to be driven by surface winds and quantified via Sverdrup balance, but it has been proposed that surface buoyancy fluxes may also contribute to gyre forcing. Through a series of eddy-permitting global ocean model simulations with perturbed surface forcing, the relative contribution of wind stress and surface heat flux forcing to the large-scale ocean circulation is investigated, focusing on the subtropical gyres. In addition to gyre strength being linearly proportional to wind stress, it is shown that the gyre circulation is strongly impacted by variations in the surface heat flux (specifically, its meridional gradient) through a rearrangement of the ocean’s buoyancy structure. On shorter time scales (∼10 years), the gyre circulation anomalies are proportional to the magnitude of the surface heat flux gradient perturbation, with up to ∼0.15 Sv (1 Sv ≡ 106 m3 s−1) anomaly induced per watt per square meter change in the surface heat flux. On time scales longer than a decade, the gyre response to surface buoyancy flux gradient perturbations becomes nonlinear as ocean circulation anomalies feed back onto the buoyancy structure induced by the surface buoyancy fluxes. These interactions complicate the development of a buoyancy-driven theory for the gyres to complement the Sverdrup relation. The flux-forced simulations underscore the importance of surface buoyancy forcing in steering the large-scale ocean circulation.

Significance Statement

Ocean gyres are large swirling circulation features that redistribute heat across ocean basins. It is commonly believed that surface winds are the sole driver of ocean gyres, but recent literature suggests that other mechanisms could also be influential. We perform a series of numerical simulations in which we artificially change either the winds or the heating at the ocean’s surface and investigate how each factor independently affects the ocean gyres. We find that gyres are steered by both winds and surface heating, and that the ocean circulation responds differently to heating on short and long time scales. In addition, the circulation depends on where the heating is applied at the ocean’s surface. Through these simulations, we argue that a complete theory about ocean gyres must consider heating at the ocean’s surface as a possible driver, in addition to the winds.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dhruv Bhagtani, dhruv.bhagtani@anu.edu.au
Save
  • Abernathey, R. P., and D. Ferreira, 2015: Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophys. Res. Lett., 42, 10 35710 365, https://doi.org/10.1002/2015GL066238.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R. P., A. Gnanadesikan, M.-A. Pradal, and M. A. Sundermeyer, 2022: Isopycnal mixing. Ocean Mixing: Drivers, Mechanisms and Impacts, M. Meredith and A. Naveira Garabato, Eds., Elsevier, 215–256, https://doi.org/10.1016/B978-0-12-821512-8.00016-5.

  • Anderson, D. L., and A. E. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res. Oceanogr. Abstr., 22, 583596, https://doi.org/10.1016/0011-7471(75)90046-7.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Berglund, S., K. Döös, S. Groeskamp, and T. J. McDougall, 2022: The downward spiralling nature of the North Atlantic subtropical gyre. Nat. Commun., 13, 2000, https://doi.org/10.1038/s41467-022-29607-8.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., D. H. Roemmich, and J. A. Church, 1991: Ocean heat transport across 24°N in the Pacific. Deep-Sea Res. I, 38, 297324, https://doi.org/10.1016/0198-0149(91)90070-V.

    • Search Google Scholar
    • Export Citation
  • Caneill, R., F. Roquet, G. Madec, and J. Nycander, 2022: The polar transition from alpha to beta regions set by a surface buoyancy flux inversion. J. Phys. Oceanogr., 52, 18871902, https://doi.org/10.1175/JPO-D-21-0295.1.

    • Search Google Scholar
    • Export Citation
  • Chen, C., G. Wang, S. P. Xie, and W. Liu, 2019: Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Climate, 32, 74377451, https://doi.org/10.1175/JCLI-D-18-0895.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 1989: On the interaction of wind and buoyancy driven gyres. J. Mar. Res., 47, 595633, https://doi.org/10.1357/002224089785076172.

    • Search Google Scholar
    • Export Citation
  • Colin De Verdière, A., and M. Ollitrault, 2016: A direct determination of the world ocean barotropic circulation. J. Phys. Oceanogr., 46, 255273, https://doi.org/10.1175/JPO-D-15-0046.1.

    • Search Google Scholar
    • Export Citation
  • Drake, H. F., R. Ferrari, and J. Callies, 2020: Abyssal circulation driven by near-boundary mixing: Water mass transformations and interior stratification. J. Phys. Oceanogr., 50, 22032226, https://doi.org/10.1175/JPO-D-19-0313.1.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., and R. W. Griffiths, 2022: Rotating horizontal convection. Annu. Rev. Fluid Mech., 54, 105132, https://doi.org/10.1146/annurev-fluid-030121-115729.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gjermundsen, A., J. H. Lacasce, and L. Denstad, 2018: The thermally driven ocean circulation with realistic bathymetry. J. Phys. Oceanogr., 48, 647665, https://doi.org/10.1175/JPO-D-17-0147.1.

    • Search Google Scholar
    • Export Citation
  • Goldsbrough, G. R., 1933: Ocean currents produced by evaporation and precipitation. Proc. Roy. Soc. London, 141A, 512517, https://doi.org/10.1098/rspa.1933.0135.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2011: Wind-driven mixing below the oceanic mixed layer. J. Phys. Oceanogr., 41, 15561575, https://doi.org/10.1175/JPO-D-10-05020.1.

    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, https://doi.org/10.1175/JPO-D-12-0206.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM) 2012 release with updates. NOAA/GFDL, www.gfdl.noaa.gov/fms.

  • Hazeleger, W., and S. Drijfhout, 2006: Subtropical cells and meridional overturning circulation pathways in the tropical Atlantic. J. Geophys. Res., 111, C03013, https://doi.org/10.1029/2005JC002942.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., and B. Gayen, 2020: Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett., 47, e2020GL088539, https://doi.org/10.1029/2020GL088539.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., P. Spence, O. A. Saenko, and S. M. Downes, 2017: The energetics of Southern Ocean upwelling. J. Phys. Oceanogr., 47, 135153, https://doi.org/10.1175/JPO-D-16-0176.1.

    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and B. A. D. Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, https://doi.org/10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study of the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, https://doi.org/10.1029/2007JC004371.

    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., A. M. Hogg, and R. W. Griffiths, 2009: Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr., 39, 31303146, https://doi.org/10.1175/2009JPO4162.1.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 5.1. Doc. LA-CC-06-012, 116 pp., https://github.com/CICE-Consortium/CICE/wiki.

  • Jamet, Q., B. Deremble, N. Wienders, T. Uchida, and W. K. Dewar, 2021: On wind-driven energetics of subtropical gyres. J. Adv. Model. Earth Syst., 13, e2020MS002329, https://doi.org/10.1029/2020MS002329.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Search Google Scholar
    • Export Citation
  • Klockmann, M., U. Mikolajewicz, H. Kleppin, and J. Marotzke, 2020: Coupling of the subpolar gyre and the overturning circulation during abrupt glacial climate transitions. Geophys. Res. Lett., 47, e2020GL090361, https://doi.org/10.1029/2020GL090361.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2004: Diffusivity and viscosity dependence in the linear thermocline. J. Mar. Res., 62, 743769, https://doi.org/10.1357/0022240042880864.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and S. Groeskamp, 2020: Baroclinic modes over rough bathymetry and the surface deformation radius. J. Phys. Oceanogr., 50, 28352847, https://doi.org/10.1175/JPO-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., M. W. Buckley, and A. C. Clement, 2020: Extracting the buoyancy-driven Atlantic meridional overturning circulation. J. Climate, 33, 46974714, https://doi.org/10.1175/JCLI-D-19-0590.1.

    • Search Google Scholar
    • Export Citation
  • Lavergne, C. D., S. Groeskamp, J. Zika, and H. L. Johnson, 2022: The role of mixing in the large-scale ocean circulation. Ocean Mixing: Drivers, Mechanisms and Impacts, M. Meredith and A. Naveira Garabato, Eds., Elsevier, 35–63, https://doi.org/10.1016/B978-0-12-821512-8.00010-4.

  • Li, J., M. Roughan, and C. Kerry, 2022: Drivers of ocean warming in the western boundary currents of the Southern Hemisphere. Nat. Climate Change, 12, 901909, https://doi.org/10.1038/s41558-022-01473-8.

    • Search Google Scholar
    • Export Citation
  • Liu, T., H. W. Ou, X. Liu, Y. K. Qian, and D. Chen, 2022: The dependence of upper ocean gyres on wind and buoyancy forcing. Geosci. Lett., 9, 2, https://doi.org/10.1186/s40562-022-00213-2.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 52 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/woa09_vol1_text.pdf.

  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 48 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Lohmann, G., H. Haak, and J. H. Jungclaus, 2008: Estimating trends of Atlantic meridional overturning circulation from long-term hydrographic data and model simulations. Ocean Dyn., 58, 127138, https://doi.org/10.1007/s10236-008-0136-7.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., H. Stommel, and C. Wunsch, 1985: A diagnostic study of the northern Atlantic subpolar gyre. J. Phys. Oceanogr., 15, 13441348, https://doi.org/10.1175/1520-0485(1985)015<1344:ADSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • McDowell, S., P. Rhines, and T. Keffer, 1982: North Atlantic potential vorticity and its relation to the general circulation. J. Phys. Oceanogr., 12, 14171436, https://doi.org/10.1175/1520-0485(1982)012<1417:NAPVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., and A. M. C. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, https://doi.org/10.1175/JPO-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. Hogg, and M. L. Ward, 2011: Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing. Geophys. Res. Lett., 38, L14602, https://doi.org/10.1029/2011GL048031.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., G. Walin, and G. Broström, 2005: Thermohaline circulation induced by bottom friction in sloping-boundary basins. J. Mar. Res., 63, 705728, https://doi.org/10.1357/0022240054663222.

    • Search Google Scholar
    • Export Citation
  • Oka, A., and Y. Niwa, 2013: Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom. Nat. Commun., 4, 2419, https://doi.org/10.1038/ncomms3419.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and J. P. Rannou, 2013: ANDRO: An Argo-based deep displacement dataset. J. Atmos. Oceanic Technol., 30, 759788, https://doi.org/10.1175/JTECH-D-12-00073.1.

    • Search Google Scholar
    • Export Citation
  • Palter, J. B., 2015: The role of the Gulf Stream in European climate. Annu. Rev. Mar. Sci., 7, 113137, https://doi.org/10.1146/annurev-marine-010814-015656.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1986: The buoyancy and wind-driven ventilated thermocline. J. Phys. Oceanogr., 16, 10771087, https://doi.org/10.1175/1520-0485(1986)016<1077:TBAWDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Search Google Scholar
    • Export Citation
  • Rocklin, M., 2015: Dask: Parallel computation with blocked algorithms and task scheduling. Proc. 14th Python in Science Conf., Austin, TX, SciPy, 126–132, https://doi.org/10.25080/Majora-7b98e3ed-013.

  • Roemmich, D., S. Riser, R. Davis, and Y. Desaubies, 2004: Autonomous profiling floats: Workhorse for broad-scale ocean observations. Mar. Technol. Soc. J., 38, 2129, https://doi.org/10.4031/002533204787522802.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., 2009: On the climatic impact of wind stress. J. Phys. Oceanogr., 39, 89106, https://doi.org/10.1175/2008JPO3981.1.

  • Sakamoto, T. T., H. Hasumi, M. Ishii, S. Emori, T. Suzuki, T. Nishimura, and A. Sumi, 2005: Responses of the Kuroshio and the Kuroshio extension to global warming in a high-resolution climate model. Geophys. Res. Lett., 32, L14617, https://doi.org/10.1029/2005GL023384.

    • Search Google Scholar
    • Export Citation
  • Shi, J. R., L. D. Talley, S. P. Xie, W. Liu, and S. T. Gille, 2020: Effects of buoyancy and wind forcing on Southern Ocean climate change. J. Climate, 33, 10 00310 020, https://doi.org/10.1175/JCLI-D-19-0877.1.

    • Search Google Scholar
    • Export Citation
  • Sohail, T., B. Gayen, and A. M. Hogg, 2020: The dynamics of mixed layer deepening during open-ocean convection. J. Phys. Oceanogr., 50, 16251641, https://doi.org/10.1175/JPO-D-19-0264.1.

    • Search Google Scholar
    • Export Citation
  • Stanley, G. J., and O. A. Saenko, 2014: Bottom-enhanced diapycnal mixing driven by mesoscale eddies: Sensitivity to wind energy supply. J. Phys. Oceanogr., 44, 6885, https://doi.org/10.1175/JPO-D-13-0116.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, K., and Coauthors, 2020: JRA55-do-based repeat year forcing datasets for driving ocean–sea-ice models. Ocean Modell., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, https://doi.org/10.3402/tellusa.v13i2.9491.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1959: On the abyssal circulation of the world ocean-I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154, https://doi.org/10.1016/0146-6313(59)90065-6.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp., https://doi.org/10.1007/978-94-009-3027-8.

  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2009: On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy. J. Fluid Mech., 638, 339382, https://doi.org/10.1017/S002211200999111X.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed. Academic Press, 555 pp., https://doi.org/10.1016/C2009-0-24322-4.

  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500, https://doi.org/10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Search Google Scholar
    • Export Citation
  • Webb, P., 2017: Introduction to Oceanography. Online OER Textbook, Roger Williams University, https://pressbooks.pub/webboceanography1/.

  • Winton, M., 1997: The damping effect of bottom topography on internal decadal-scale oscillations of the thermohaline circulation. J. Phys. Oceanogr., 27, 203208, https://doi.org/10.1175/1520-0485(1997)027<0203:TDEOBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yang, H., K. Wang, H. Dai, Y. Wang, and Q. Li, 2016: Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion. Climate Dyn., 46, 33873403, https://doi.org/10.1007/s00382-015-2774-z.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., 2015: Topographic coupling of the Atlantic overturning and gyre circulations. J. Phys. Oceanogr., 45, 12581284, https://doi.org/10.1175/JPO-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., and G. Danabasoglu, 2014: The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Climate, 27, 32223247, https://doi.org/10.1175/JCLI-D-13-00125.1.

    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., 2015: Scaling surface mixing/mixed layer depth under stabilizing buoyancy flux. J. Phys. Oceanogr., 45, 247258, https://doi.org/10.1175/JPO-D-13-0190.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X. Zheng, D. Kong, H. Yan, and Z. Liu, 2021: Enhanced North Pacific subtropical gyre circulation during the late Holocene. Nat. Commun., 12, 5957, https://doi.org/10.1038/s41467-021-26218-7.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 47 pp., https://www.ncei.noaa.gov/data/oceans/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 678 678 28
Full Text Views 352 351 26
PDF Downloads 346 346 17