Fresh Water and Atmospheric Cooling Control on Density-Compensated Overturning in the Labrador Sea

Yana Bebieva aSchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yana Bebieva in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0061-2491
and
M. Susan Lozier aSchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by M. Susan Lozier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As they rim the basin from the southern tip of Greenland to the southern Labrador coast, the waters in the Labrador Sea boundary current undergo a significant transformation in salinity and temperature, but much less so in density. Motivated by these observations, a previously developed simple three-layer model is adapted to understand the processes responsible for this density-compensated overturning in the Labrador Sea. From our model simulations, we find that the density-compensating water mass transformation in the boundary current can be largely attributed to the combined effect of 1) direct atmospheric cooling of the relatively warm boundary current and 2) freshening due to mixing with the shallower and fresh waters derived from Greenland meltwater discharge and Arctic Ocean inflow. Freshening of the boundary current waters due to the excess of precipitation over evaporation in the basin has an important, but less impactful, role in the density compensation. Studies examining the sensitivity of the density compensation to the freshwater entry location reveal a larger impact when the freshwater enters the boundary current on the Greenland side of the basin, compared to the Labrador side. These results yield insights into how increasing meltwater in the subpolar North Atlantic will affect the overturning.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yana Bebieva, ybebieva3@gatech.edu

Abstract

As they rim the basin from the southern tip of Greenland to the southern Labrador coast, the waters in the Labrador Sea boundary current undergo a significant transformation in salinity and temperature, but much less so in density. Motivated by these observations, a previously developed simple three-layer model is adapted to understand the processes responsible for this density-compensated overturning in the Labrador Sea. From our model simulations, we find that the density-compensating water mass transformation in the boundary current can be largely attributed to the combined effect of 1) direct atmospheric cooling of the relatively warm boundary current and 2) freshening due to mixing with the shallower and fresh waters derived from Greenland meltwater discharge and Arctic Ocean inflow. Freshening of the boundary current waters due to the excess of precipitation over evaporation in the basin has an important, but less impactful, role in the density compensation. Studies examining the sensitivity of the density compensation to the freshwater entry location reveal a larger impact when the freshwater enters the boundary current on the Greenland side of the basin, compared to the Labrador side. These results yield insights into how increasing meltwater in the subpolar North Atlantic will affect the overturning.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yana Bebieva, ybebieva3@gatech.edu
Save
  • Bamber, J. L., A. J. Tedstone, M. D. King, I. M. Howat, E. M. Enderlin, M. R. Van Den Broeke, and B. Noel, 2018: Land ice freshwater budget of the Arctic and North Atlantic oceans: 1. Data, methods, and results. J. Geophys. Res. Oceans, 123, 18271837, https://doi.org/10.1002/2017JC013605.

    • Search Google Scholar
    • Export Citation
  • Bebieva, Y., and K. Speer, 2021: Thermohaline suppression of upper circumpolar deep water eddies in the Ross Gyre. Geophys. Res. Lett., 48, e2021GL094476, https://doi.org/10.1029/2021GL094476.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Coauthors, 2016: Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos., 121, 44684486, https://doi.org/10.1002/2015JD024546.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., E. Behrens, A. Biastoch, K. Getzlaff, and J. L. Bamber, 2016: Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci., 9, 523527, https://doi.org/10.1038/ngeo2740.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, https://doi.org/10.1029/JC084iC05p02503.

    • Search Google Scholar
    • Export Citation
  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines, and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr., 38, 16171643, https://doi.org/10.1175/2008JPO3485.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, and B. D. Tapley, 2006: Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313, 19581960, https://doi.org/10.1126/science.1129007.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., B. Rudels, S. Dye, M. Karcher, J. Meincke, and I. Yashayaev, 2007: Current estimates of freshwater flux through Arctic and subarctic seas. Prog. Oceanogr., 73, 210230, https://doi.org/10.1016/j.pocean.2006.12.003.

    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D. S., I. Yashayaev, E. P. Chassignet, P. G. Myers, G. Platov, and A. Proshutinsky, 2021: Time scales of the Greenland freshwater anomaly in the subpolar North Atlantic. J. Climate, 34, 89718987, https://doi.org/10.1175/JCLI-D-20-0610.1.

    • Search Google Scholar
    • Export Citation
  • ECCO Consortium, I. Fukumori, O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO Central Estimate (Version 4 Release 4). NASA, accessed 1 July 2022, https://podaac.jpl.nasa.gov/ECCO?tab=mission-objectives&sections=about%2Bdata.

  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lambert, E., T. Eldevik, and M. A. Spall, 2018: On the dynamics and water mass transformation of a boundary current connecting alpha and beta oceans. J. Phys. Oceanogr., 48, 24572475, https://doi.org/10.1175/JPO-D-17-0186.1.

    • Search Google Scholar
    • Export Citation
  • Li, F., and Coauthors, 2021: Subpolar North Atlantic western boundary density anomalies and the meridional overturning circulation. Nat. Commun., 12, 3002, https://doi.org/10.1038/s41467-021-23350-2.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176, https://doi.org/10.1016/j.pocean.2003.08.013.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Search Google Scholar
    • Export Citation
  • Mohammmad, R., and J. Nilsson, 2004: The role of diapycnal mixing for the equilibrium response of thermohaline circulation. Ocean Dyn., 54, 5465, https://doi.org/10.1007/s10236-003-0065-4.

    • Search Google Scholar
    • Export Citation
  • Myers, P. G., S. A. Josey, B. Wheler, and N. Kulan, 2007: Interdecadal variability in Labrador Sea precipitation minus evaporation and salinity. Prog. Oceanogr., 73, 341357, https://doi.org/10.1016/j.pocean.2006.06.003.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., and G. Walin, 2010: Salinity-dominated thermohaline circulation in sill basins: Can two stable equilibria exist? Tellus, 62A, 123133, https://doi.org/10.1111/j.1600-0870.2009.00428.x.

    • Search Google Scholar
    • Export Citation
  • Pacini, A., and Coauthors, 2020: Mean conditions and seasonality of the West Greenland boundary current system near Cape Farewell. J. Phys. Oceanogr., 50, 28492871, https://doi.org/10.1175/JPO-D-20-0086.1.

    • Search Google Scholar
    • Export Citation
  • Petit, T., M. S. Lozier, S. A. Josey, and S. A. Cunningham, 2020: Atlantic deep water formation occurs primarily in the Iceland basin and Irminger Sea by local buoyancy forcing. Geophys. Res. Lett., 47, e2020GL091028, https://doi.org/10.1029/2020GL091028.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, https://doi.org/10.1175/JPO3178.1.

    • Search Google Scholar
    • Export Citation
  • Prater, M. D., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32, 411427, https://doi.org/10.1175/1520-0485(2002)032<0411:EITLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and Coauthors, 2019: Analysis of the Beaufort Gyre freshwater content in 2003–2018. J. Geophys. Res. Oceans, 124, 96589689, https://doi.org/10.1029/2019JC015281.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and O. Kerr, 2003: Oceanic thermohaline intrusions: Theory. Prog. Oceanogr., 56, 483497, https://doi.org/10.1016/S0079-6611(03)00029-6.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and K. Richards, 2003: Oceanic thermohaline intrusions: Observations. Prog. Oceanogr., 56, 499527, https://doi.org/10.1016/S0079-6611(03)00028-4.

    • Search Google Scholar
    • Export Citation
  • Sasgen, I., and Coauthors, 2012: Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333334, 293303, https://doi.org/10.1016/j.epsl.2012.03.033.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, https://doi.org/10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2012: Influences of precipitation on water mass transformation and deep convection. J. Phys. Oceanogr., 42, 16841700, https://doi.org/10.1175/JPO-D-11-0230.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2013: On the circulation of Atlantic water in the Arctic Ocean. J. Phys. Oceanogr., 43, 23522371, https://doi.org/10.1175/JPO-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36, 18221840, https://doi.org/10.1175/JPO2932.1.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and H. Jones, 1996: Dynamics of isolated convective regions in the ocean. J. Phys. Oceanogr., 26, 17211734, https://doi.org/10.1175/1520-0485(1996)026<1721:DOICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wåhlin, A. K., and H. L. Johnson, 2009: The salinity, heat, and buoyancy budgets of a coastal current in a marginal sea. J. Phys. Oceanogr., 39, 25622580, https://doi.org/10.1175/2009JPO4090.1.

    • Search Google Scholar
    • Export Citation
  • Werenskiold, W., 1935: Coastal currents. Geofys. Publ., 10 (13), 114.

  • Zhang, J., W. Weijer, M. Steele, W. Cheng, T. Verma, and M. Veneziani, 2021: Labrador Sea freshening linked to Beaufort Gyre freshwater release. Nat. Commun., 12, 1229, https://doi.org/10.1038/s41467-021-21470-3.

    • Search Google Scholar
    • Export Citation
  • Zou, S., M. S. Lozier, F. Li, R. Abernathey, and L. Jackson, 2020: Density-compensated overturning in the Labrador Sea. Nat. Geosci., 13, 121126, https://doi.org/10.1038/s41561-019-0517-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 710 562 16
Full Text Views 319 280 4
PDF Downloads 527 480 7