Contribution of Deep Vertical Velocity to Deficiency of Sverdrup Transport in the Low-Latitude North Pacific

Kun Zhang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
bLaboratory for Ocean and Climate Dynamics, Laoshan Laboratory, Qingdao, China

Search for other papers by Kun Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9918-6690
,
Qiang Wang cKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
dCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Qiang Wang in
Current site
Google Scholar
PubMed
Close
,
Baoshu Yin aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
bLaboratory for Ocean and Climate Dynamics, Laoshan Laboratory, Qingdao, China
eUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Baoshu Yin in
Current site
Google Scholar
PubMed
Close
,
Dezhou Yang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
bLaboratory for Ocean and Climate Dynamics, Laoshan Laboratory, Qingdao, China
eUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Dezhou Yang in
Current site
Google Scholar
PubMed
Close
, and
Lina Yang fCollege of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China

Search for other papers by Lina Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deep vertical velocity is a critical factor causing deficiencies in Sverdrup theory. However, few studies have focused on its influence in the low-latitude western Pacific. Through multiple analyses of observational, reanalysis, and simulation data, this study explored the contribution of deep nonzero vertical velocity to the Sverdrup transport inaccuracy in the low-latitude North Pacific. The vertical velocities inducing relatively small non-Sverdrup transport exist within 1500–2500 m, which exhibit similar patterns with opposite values to the south and north of 13°N. The zonally integrated meridional volume transport associated with these vertical velocities displays nonnegligible dipolar zonal bands west of approximately 150°W. The positive and negative transport bands, centered at 11° and 17°N, can reach an amplitude of approximately 8.0 Sv (1 Sv ≡ 106 m3 s−1) when integrated from the eastern boundary to 140°E. On average, such integrated meridional transport makes up roughly half of the prominent Sverdrup transport discrepancies in the central-western Pacific. Further investigation indicated that the spatial pattern of these vertical velocities is modulated by ocean topography and deep meridional currents. Moreover, a near-global test suggested that the meridional non-Sverdrup transport related to deep vertical velocity is widespread and undergoes remarkable multidecadal variation. This study reveals the disruptive role of deep vertical velocity in disturbing the Sverdrup balance and emphasizes the consideration of its long-term variation when diagnosing wind-driven circulation changes using Sverdrup theory.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun Zhang, kzhang@qdio.ac.cn

Abstract

Deep vertical velocity is a critical factor causing deficiencies in Sverdrup theory. However, few studies have focused on its influence in the low-latitude western Pacific. Through multiple analyses of observational, reanalysis, and simulation data, this study explored the contribution of deep nonzero vertical velocity to the Sverdrup transport inaccuracy in the low-latitude North Pacific. The vertical velocities inducing relatively small non-Sverdrup transport exist within 1500–2500 m, which exhibit similar patterns with opposite values to the south and north of 13°N. The zonally integrated meridional volume transport associated with these vertical velocities displays nonnegligible dipolar zonal bands west of approximately 150°W. The positive and negative transport bands, centered at 11° and 17°N, can reach an amplitude of approximately 8.0 Sv (1 Sv ≡ 106 m3 s−1) when integrated from the eastern boundary to 140°E. On average, such integrated meridional transport makes up roughly half of the prominent Sverdrup transport discrepancies in the central-western Pacific. Further investigation indicated that the spatial pattern of these vertical velocities is modulated by ocean topography and deep meridional currents. Moreover, a near-global test suggested that the meridional non-Sverdrup transport related to deep vertical velocity is widespread and undergoes remarkable multidecadal variation. This study reveals the disruptive role of deep vertical velocity in disturbing the Sverdrup balance and emphasizes the consideration of its long-term variation when diagnosing wind-driven circulation changes using Sverdrup theory.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun Zhang, kzhang@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.6414 MB)
Save
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., A. Vidard, and D. L. T. Anderson, 2008: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev., 136, 30183034, https://doi.org/10.1175/2008MWR2433.1.

    • Search Google Scholar
    • Export Citation
  • Beadling, R. L., J. L. Russell, R. J. Stouffer, and P. J. Goodman, 2018: Evaluation of subtropical North Atlantic Ocean circulation in CMIP5 models against the observational array at 26.5°N and its changes under continued warming. J. Climate, 31, 96979718, https://doi.org/10.1175/JCLI-D-17-0845.1.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, https://doi.org/10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., R. Döscher, and H.-J. Isemer, 1991: Monthly mean wind stress and Sverdrup transports in the North Atlantic: A comparison of the Hellerman–Rosenstein and Isemer–Hasse climatologies. J. Phys. Oceanogr., 21, 221235, https://doi.org/10.1175/1520-0485(1991)021<0221:MMWSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bull, C. Y. S., A. E. Kiss, A. Sen Gupta, N. C. Jourdain, D. Argüeso, A. Di Luca, and G. Sérazin, 2020: Regional versus remote atmosphere-ocean drivers of the rapid projected intensification of the East Australian current. J. Geophys. Res. Oceans, 125, e2019JC015889, https://doi.org/10.1029/2019JC015889.

    • Search Google Scholar
    • Export Citation
  • Chen, G., R. X. Huang, Q. Peng, and X. Chu, 2022: A time-dependent Sverdrup relation and its application to the Indian Ocean. J. Phys. Oceanogr., 52, 12331244, https://doi.org/10.1175/JPO-D-21-0223.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P. C., 1995: P-vector method for determining absolute velocity from hydrographic data. Mar. Technol. Soc. J., 29, 314.

  • de Boer, A. M., and H. L. Johnson, 2007: Inferring the zonal distribution of measured changes in the meridional overturning circulation. Ocean Sci., 3, 5557, https://doi.org/10.5194/os-3-55-2007.

    • Search Google Scholar
    • Export Citation
  • Dohan, K., 2017: Ocean surface currents from satellite data. J. Geophys. Res. Oceans, 122, 26472651, https://doi.org/10.1002/2017JC012961.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Foreman, R. J., and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332, https://doi.org/10.1175/2010JPO4420.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89112, https://doi.org/10.1080/03091928908208894.

    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, https://doi.org/10.1175/JPO-D-12-0206.1.

    • Search Google Scholar
    • Export Citation
  • Hautala, S. L., D. H. Roemmich, and W. J. Schmitz Jr., 1994: Is the North Pacific in Sverdrup balance along 24°N? J. Geophys. Res., 99, 16 04116 052, https://doi.org/10.1029/94JC01084.

    • Search Google Scholar
    • Export Citation
  • Hu, D., and Coauthors, 2015: Pacific western boundary currents and their roles in climate. Nature, 522, 299308, https://doi.org/10.1038/nature14504.

    • Search Google Scholar
    • Export Citation
  • Hu, D., and Coauthors, 2020: Review on observational studies of western tropical Pacific Ocean circulation and climate. J. Oceanol. Limnol., 38, 906929, https://doi.org/10.1007/s00343-020-0240-1.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2009: Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, 806 pp.

  • Huang, Y., L. Zhang, F. Wang, F. Wang, and D. Hu, 2022: Interannual variations of the North Equatorial current/undercurrent from mooring array observations. Front. Mar. Sci., 9, 979442, https://doi.org/10.3389/fmars.2022.979442.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and Coauthors, 2022: Argo—Two decades: Global oceanography, revolutionized. Annu. Rev. Mar. Sci., 14, 379403, https://doi.org/10.1146/annurev-marine-022521-102008.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., and S. Fujio, 2010: Pacific Ocean circulation based on observation. J. Oceanogr., 66, 389403, https://doi.org/10.1007/s10872-010-0034-8.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leetma, A., P. Niiler, and H. Stommel, 1977: Does the Sverdrup relation account for the mid-Atlantic circulation? J. Mar. Res., 35, 110.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and L. Yu, 2016: Variations of the global net air-sea heat flux during the “hiatus” period (2001–10). J. Climate, 29, 36473660, https://doi.org/10.1175/JCLI-D-15-0626.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2015: Vertical redistribution of oceanic heat content. J. Climate, 28, 38213833, https://doi.org/10.1175/JCLI-D-14-00550.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., C. G. Piecuch, R. M. Ponte, G. Forget, C. Wunsch, and P. Heimbach, 2017a: Change of the global ocean vertical heat transport over 1993–2010. J. Climate, 30, 53195327, https://doi.org/10.1175/JCLI-D-16-0569.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., M. Spall, and C. Wunsch, 2017b: Global ocean vertical velocity from a dynamically consistent ocean state estimate. J. Geophys. Res. Oceans, 122, 82088224, https://doi.org/10.1002/2017JC012985.

    • Search Google Scholar
    • Export Citation
  • Liao, F., G. Gao, P. Zhan, and Y. Wang, 2022a: Seasonality and trend of the global upper-ocean vertical velocity over 1998–2017. Prog. Oceanogr., 204, 102804, https://doi.org/10.1016/j.pocean.2022.102804.

    • Search Google Scholar
    • Export Citation
  • Liao, F., X. Liang, Y. Li, and M. Spall, 2022b: Hidden upwelling systems associated with major western boundary currents. J. Geophys. Res. Oceans, 127, e2021JC017649, https://doi.org/10.1029/2021JC017649.

    • Search Google Scholar
    • Export Citation
  • Liu, C., X. Liang, R. M. Ponte, N. Vinogradova, and O. Wang, 2019: Vertical redistribution of salt and layered changes in global ocean salinity. Nat. Commun., 10, 3445, https://doi.org/10.1038/s41467-019-11436-x.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., S. Mecking, P. E. Robbins, J. M. Toole, G. C. Johnson, L. Talley, M. Cook, and S. E. Wijffels, 2009: The WOCE-era 3-D Pacific Ocean circulation and heat budget. Prog. Oceanogr., 82, 281325, https://doi.org/10.1016/j.pocean.2009.08.002.

    • Search Google Scholar
    • Export Citation
  • Marchuk, G. I., A. J. Sarkisian, and V. P. Kochergin, 1973: Calculations of flows in a baroclinic ocean: Numerical methods and results. Geophys. Fluid Dyn., 5, 8999, https://doi.org/10.1080/03091927308236109.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603608, https://doi.org/10.1038/415603a.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J.-M. Campin, P. Heimbach, C. N. Hill, T. Lee, A. T. Nguyen, M. P. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, 13–21, https://www.mercator-ocean.eu/wp-content/uploads/2015/06/lettre_31_en.pdf.

  • Meyers, G., 1980: Do Sverdrup transports account for the Pacific North Equatorial Countercurrent? J. Geophys. Res., 85, 10731075, https://doi.org/10.1029/JC085iC02p01073.

    • Search Google Scholar
    • Export Citation
  • Oka, E., and Coauthors, 2018: Fifty years of the 137°E repeat hydrographic section in the western North Pacific Ocean. J. Oceanogr., 74, 115145, https://doi.org/10.1007/s10872-017-0461-x.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp.

  • Peng, Q., S.-P. Xie, D. Wang, R. X. Huang, G. Chen, Y. Shu, J.-R. Shi, and W. Liu, 2022: Surface warming–induced global acceleration of upper ocean currents. Sci. Adv., 8, eabj8394, https://doi.org/10.1126/sciadv.abj8394.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and F. J. Wentz, 2015: A scatterometer geophysical model function for climate-quality winds: QuikSCAT Ku-2011. J. Atmos. Oceanic Technol., 32, 18291846, https://doi.org/10.1175/JTECH-D-15-0008.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., S. Riser, R. Davis, and Y. Desaubies, 2004: Autonomous profiling floats: Workhorse for broad-scale ocean observations. Mar. Technol. Soc. J., 38, 2129, https://doi.org/10.4031/002533204787522802.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185.

  • Schmitz, W. J., Jr., J. D. Thompson, and J. R. Luyten, 1992: The Sverdrup circulation for the Atlantic along 24°N. J. Geophys. Res., 97, 72517256, https://doi.org/10.1029/92JC00417.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35, https://www.ecmwf.int/sites/default/files/elibrary/2006/14615-newsletter-no110-winter-200607.pdf.

  • Stammer, D., M. Balmaseda, P. Heimbach, A. Köhl, and A. Weaver, 2016: Ocean data assimilation in support of climate applications: Status and perspectives. Annu. Rev. Mar. Sci., 8, 491518, https://doi.org/10.1146/annurev-marine-122414-034113.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., J. C. McWilliams, and A. Solodoch, 2021: On the role of bottom pressure torques in wind-driven gyres. J. Phys. Oceanogr., 51, 14411464, https://doi.org/10.1175/JPO-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., A. M. de Boer, D. P. Stevens, and H. L. Johnson, 2012: Upper ocean manifestations of a reducing meridional overturning circulation. Geophys. Res. Lett., 39, L16609, https://doi.org/10.1029/2012GL052702.

    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., A. M. de Boer, H. L. Johnson, and D. P. Stevens, 2014: Spatial and temporal scales of Sverdrup balance. J. Phys. Oceanogr., 44, 26442660, https://doi.org/10.1175/JPO-D-13-0192.1.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. Thompson, 1999: Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean. J. Geophys. Res., 104, 20 76720 788, https://doi.org/10.1029/1999JC900096.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-L., and C.-R. Wu, 2018: Discordant multi-decadal trend in the intensity of the Kuroshio along its path during 1993–2013. Sci. Rep., 8, 14633, https://doi.org/10.1038/s41598-018-32843-y.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, https://doi.org/10.1038/nclimate1353.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2011: The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69, 417434, https://doi.org/10.1357/002224011798765303.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Roemmich, 1985: Is the North Atlantic in Sverdrup balance? J. Phys. Oceanogr., 15, 18761880, https://doi.org/10.1175/1520-0485(1985)015<1876:ITNAIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, H., X. Guo, Y. Miyazawa, S. M. Varlamov, A. Abe-Ouchi, and W.-L. Chan, 2022: Changes in the Kuroshio path, surface velocity and transport during the last 35,000 years. Geophys. Res. Lett., 49, e2021GL097250, https://doi.org/10.1029/2021GL097250.

    • Search Google Scholar
    • Export Citation
  • Yang, L., and D. Yuan, 2016: Absolute geostrophic currents in global tropical oceans. Chin. J. Oceanol. Limnol., 34, 13831393, https://doi.org/10.1007/s00343-016-5092-3.

    • Search Google Scholar
    • Export Citation
  • Yang, L., R. Murtugudde, S. Zheng, P. Liang, W. Tan, L. Wang, B. Feng, and T. Zhang, 2022: Seasonal variability of the Pacific South Equatorial Current during the Argo era. J. Phys. Oceanogr., 52, 22892304, https://doi.org/10.1175/JPO-D-21-0311.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., T. H. Dixon, P. G. Myers, J. Bonin, D. Chambers, M. R. van den Broeke, M. H. Ribergaard, and J. Mortensen, 2016: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun., 7, 13545, https://doi.org/10.1038/ncomms13545.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., Z. Zhang, P. C. Chu, and W. K. Dewar, 2014: Geostrophic circulation in the tropical North Pacific Ocean based on Argo profiles. J. Phys. Oceanogr., 44, 558575, https://doi.org/10.1175/JPO-D-12-0230.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., M. Mu, and Q. Wang, 2020: Increasingly important role of numerical modeling in oceanic observation design strategy: A review. Sci. China Earth Sci., 63, 16781690, https://doi.org/10.1007/s11430-020-9674-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Q. Wang, and B. Yin, 2022: Decadal sea surface height modes in the low-latitude northwestern Pacific and their contribution to the North Equatorial Current transport variation. J. Oceanogr., 78, 381395, https://doi.org/10.1007/s10872-022-00645-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Q. Wang, and M. Mu, 2017: The impact of global warming on Kuroshio Extension and its southern recirculation using CMIP5 experiments with a high-resolution climate model MIROC4h. Theor. Appl. Climatol., 127, 815827, https://doi.org/10.1007/s00704-015-1672-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Zhang, D. Chen, B. Qiu, and W. Wang, 2020: Strengthening of the Kuroshio Current by intensifying tropical cyclones. Science, 368, 988993, https://doi.org/10.1126/science.aax5758.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., D. Yuan, and P. C. Chu, 2013: Geostrophic meridional transport in tropical northwest Pacific based on Argo profiles. Chin. J. Oceanol. Limnol., 31, 656664, https://doi.org/10.1007/s00343-013-2169-0.

    • Search Google Scholar
    • Export Citation
  • Zhou, H., X. Liu, and P. Xu, 2019: Sensitivity of Sverdrup transport to surface wind products over the tropical North Pacific Ocean. Ocean Dyn., 69, 529542, https://doi.org/10.1007/s10236-019-01260-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3393 3393 18
Full Text Views 219 219 12
PDF Downloads 200 200 2