Internal Lee Wave Generation from Geostrophic Flow in the Northwestern Pacific Ocean

Ji Li aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
cUniversity of Chinese Academy of Sciences, Beijing, China
dCAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Ji Li in
Current site
Google Scholar
PubMed
Close
,
Zhenhua Xu aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bPilot National Laboratory for Marine Science and Technology, Qingdao, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhenhua Xu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2341-4746
,
Zhanjiu Hao aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhanjiu Hao in
Current site
Google Scholar
PubMed
Close
,
Jia You aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jia You in
Current site
Google Scholar
PubMed
Close
,
Peiwen Zhang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bPilot National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Peiwen Zhang in
Current site
Google Scholar
PubMed
Close
, and
Baoshu Yin aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bPilot National Laboratory for Marine Science and Technology, Qingdao, China
cUniversity of Chinese Academy of Sciences, Beijing, China
dCAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Baoshu Yin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Among the global mapping of lee wave generation, a missing piece exists in the northwestern Pacific Ocean (NPO), which features complex topographies and energetic circulations. This study applies Bell’s theory to estimate and map internal lee waves generated by geostrophic flows in the NPO using Mercator Ocean reanalysis data and the full topographic spectra obtained from the latest synthetic bathymetry product. Unlike the dominant contributions from abyssal hills in the Southern Ocean, multiple topographies, including ridges, rises, and continental margins, result in an inhomogeneous lee wave generation with multiple hotspots in the NPO. The generation rate is generally higher in the Philippine basin and lower in the central Pacific seamounts. Over ridges, the rough topography creates a high potential for triggering lee waves. Over rises and continental margins, the stronger currents at the shallow depths are favorable for lee wave generation. In the Kuroshio extension region, the rough topography and strong currents cause the strongest lee wave generation, with an energy flux reaching 100 mW m−2. By mean–eddy decomposition, it is found that the lee wave hotspots contributed by mean flow are concentrated in specific regions, while those by geostrophic eddies are widely distributed. Geostrophic eddies are the primary contributor to lee wave generation, which account for 74.6% of the total energy transferred from geostrophic flow to lee waves. This study also reveals that tides suppress the lee wave generation by 14%, and geostrophic flow can cause an asymmetric generation of internal tides.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenhua Xu, xuzhenhua@qdio.ac.cn

Abstract

Among the global mapping of lee wave generation, a missing piece exists in the northwestern Pacific Ocean (NPO), which features complex topographies and energetic circulations. This study applies Bell’s theory to estimate and map internal lee waves generated by geostrophic flows in the NPO using Mercator Ocean reanalysis data and the full topographic spectra obtained from the latest synthetic bathymetry product. Unlike the dominant contributions from abyssal hills in the Southern Ocean, multiple topographies, including ridges, rises, and continental margins, result in an inhomogeneous lee wave generation with multiple hotspots in the NPO. The generation rate is generally higher in the Philippine basin and lower in the central Pacific seamounts. Over ridges, the rough topography creates a high potential for triggering lee waves. Over rises and continental margins, the stronger currents at the shallow depths are favorable for lee wave generation. In the Kuroshio extension region, the rough topography and strong currents cause the strongest lee wave generation, with an energy flux reaching 100 mW m−2. By mean–eddy decomposition, it is found that the lee wave hotspots contributed by mean flow are concentrated in specific regions, while those by geostrophic eddies are widely distributed. Geostrophic eddies are the primary contributor to lee wave generation, which account for 74.6% of the total energy transferred from geostrophic flow to lee waves. This study also reveals that tides suppress the lee wave generation by 14%, and geostrophic flow can cause an asymmetric generation of internal tides.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenhua Xu, xuzhenhua@qdio.ac.cn
Save
  • Alford, M. H., J. M. Klymak, and G. S. Carter, 2014: Breaking internal lee waves at Kaena Ridge, Hawaii. Geophys. Res. Lett., 41, 906912, https://doi.org/10.1002/2013GL059070.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, https://doi.org/10.1038/nature14399.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. D. Nash, and M. Buijsman, 2022: Tidally forced turbulent dissipation on a three dimensional fan in Luzon Strait. J. Phys. Oceanogr., 53, 177193, https://doi.org/10.1175/JPO-D-22-0117.1.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and Coauthors, 2018: A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography, E. Chassignet et al., Eds., GODAE OceanView, 307–392.

  • Baker, L. E., and A. Mashayek, 2022: The impact of representations of realistic topography on parameterized oceanic lee wave energy flux. J. Geophys. Res. Oceans, 127, e2022JC018995, https://doi.org/10.1029/2022JC018995.

    • Search Google Scholar
    • Export Citation
  • Becker, J. J., and Coauthors, 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32, 355371, https://doi.org/10.1080/01490410903297766.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., Jr., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., S. Legg, and J. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356, https://doi.org/10.1175/JPO-D-11-0210.1.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2014: Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44, 850869, https://doi.org/10.1175/JPO-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Cusack, J. M., A. C. Naveira Garabato, D. A. Smeed, and J. B. Girton, 2017: Observation of a large lee wave in the Drake Passage. J. Phys. Oceanogr., 47, 793810, https://doi.org/10.1175/JPO-D-16-0153.1.

    • Search Google Scholar
    • Export Citation
  • de Marez, C., N. J. Lahaye, and J. Gula, 2020: Interaction of the Gulf Stream with small scale topography: A focus on lee waves. Sci. Rep., 10, 2332, https://doi.org/10.1038/s41598-020-59297-5.

    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, and A. F. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, https://doi.org/10.1175/JPO3047.1.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., and J. Nycander, 2015: On the generation of bottom-trapped internal tides. J. Phys. Oceanogr., 45, 526545, https://doi.org/10.1175/JPO-D-14-0081.1.

    • Search Google Scholar
    • Export Citation
  • Fer, I., and Coauthors, 2020: Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins. Geophys. Res. Lett., 47, e2020GL088083, https://doi.org/10.1029/2020GL088083.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., 2010: Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res., 115, B12104, https://doi.org/10.1029/2010JB007867.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., 2020: Identifying characteristic and anomalous mantle from the complex relationship between abyssal hill roughness and spreading rates. Geophys. Res. Lett., 47, e2020GL088162, https://doi.org/10.1029/2020GL088162.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1989: Stochastic modeling of seafloor morphology: A parameterized Gaussian model. Geophys. Res. Lett., 16, 4548, https://doi.org/10.1029/GL016i001p00045.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and B. K. Arbic, 2010: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Modell., 32, 3643, https://doi.org/10.1016/j.ocemod.2009.10.001.

    • Search Google Scholar
    • Export Citation
  • Gutierrez-Villanueva, M. O., T. K. Chereskin, J. Sprintall, and J. A. Goff, 2022: Turbulent mixing and lee-wave radiation in Drake Passage: Sensitivity to topography. J. Geophys. Res. Oceans, 127, e2021JC018103, https://doi.org/10.1029/2021JC018103.

    • Search Google Scholar
    • Export Citation
  • Hall, R. A., J. M. Huthnance, and R. G. Williams, 2013: Internal wave reflection on shelf slopes with depth-varying stratification. J. Phys. Oceanogr., 43, 248258, https://doi.org/10.1175/JPO-D-11-0192.1.

    • Search Google Scholar
    • Export Citation
  • Han, B., 2022: The energy conversion rates from eddies and mean flow into internal lee waves in the global ocean. J. Oceanol. Limnol., 40, 13041313, https://doi.org/10.1007/s00343-021-1085-y.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P. J., W. A. M. Nimmo-Smith, R. Proud, K. Adams, and A. S. Brierley, 2019: Internal lee waves and baroclinic bores over a tropical seamount shark ‘hot-spot.’ Prog. Oceanogr., 172, 3450, https://doi.org/10.1016/j.pocean.2019.01.010.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., C. Dong, Y. Ji, C. Wang, Y. Shu, L. Liu, and J. Ji, 2021: Influences of deep-water seamounts on the hydrodynamic environment in the northwestern Pacific Ocean. J. Geophys. Res. Oceans, 126, e2021JC017396, https://doi.org/10.1029/2021JC017396.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., and S. Fujio, 2010: Pacific Ocean circulation based on observation. J. Oceanogr., 66, 389403, https://doi.org/10.1007/s10872-010-0034-8.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., A. F. Waterhouse, and A. C. Savage, 2021: Global dynamics of the stationary M2 mode-1 internal tide. Geophys. Res. Lett., 48, e2020GL091692, https://doi.org/10.1029/2020GL091692.

    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., and B. S. Powell, 2022: Including tides improves subtidal prediction in a region of strong surface and internal tides and energetic mesoscale circulation. J. Geophys. Res. Oceans, 127, e2021JC018314, https://doi.org/10.1029/2021JC018314.

    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2016: Quantifying the incoherent M2 internal tide in the Philippine Sea. J. Phys. Oceanogr., 46, 24832491, https://doi.org/10.1175/JPO-D-16-0023.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., 2018: Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal hill topography. J. Phys. Oceanogr., 48, 23832395, https://doi.org/10.1175/JPO-D-17-0225.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. M. Legg, and R. Pinkel, 2010: High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech., 644, 321336, https://doi.org/10.1017/S0022112009992503.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., D. Balwada, A. Naveira Garabato, and R. Abernathey, 2021: Parameterizing nonpropagating form drag over rough bathymetry. J. Phys. Oceanogr., 51, 14891501, https://doi.org/10.1175/JPO-D-20-0112.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and R.-C. Lien, 2019: Energy sinks for lee waves in shear flow. J. Phys. Oceanogr., 49, 28512865, https://doi.org/10.1175/JPO-D-19-0052.1.

    • Search Google Scholar
    • Export Citation
  • Lefauve, A., C. Muller, and A. Melet, 2015: A three-dimensional map of tidal dissipation over abyssal hills. J. Geophys. Res. Oceans, 120, 47604777, https://doi.org/10.1002/2014JC010598.

    • Search Google Scholar
    • Export Citation
  • Legg, S., 2021: Mixing by oceanic lee waves. Annu. Rev. Fluid Mech., 53, 173201, https://doi.org/10.1146/annurev-fluid-051220-043904.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, E., Y. Uchiyama, and H. Yamazaki, 2019: Strong internal waves generated by the interaction of the Kuroshio and tides over a shallow ridge. J. Phys. Oceanogr., 49, 29172934, https://doi.org/10.1175/JPO-D-18-0238.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., M. Nikurashin, C. Muller, S. Falahat, J. Nycander, P. G. Timko, B. K. Arbic, and J. A. Goff, 2013: Internal tide generation by abyssal hills using analytical theory. J. Geophys. Res. Oceans, 118, 63036318, https://doi.org/10.1002/2013JC009212.

    • Search Google Scholar
    • Export Citation
  • Müller, M., 2013: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Modell., 72, 242252, https://doi.org/10.1016/j.ocemod.2013.09.007.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R., F. Pollmann, S. Kelly, and M. Nikurashin, 2022: The lifecycle of topographically-generated internal waves. Ocean Mixing, M. Meredith and A. Naveira Garabato, Eds., Elsevier, 117–144.

  • Nakamura, T., and Coauthors, 2000: The generation of large-amplitude unsteady lee waves by subinertial K1 tidal flow: A possible vertical mixing mechanism in the Kuril Straits. J. Phys. Oceanogr., 30, 16011621, https://doi.org/10.1175/1520-0485(2000)030<1601:TGOLAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, F. Yu, Q. Ren, and J. Wang, 2022: Diapycnal mixing variations induced by subthermocline eddies observed in the North Pacific western boundary region. Front. Mar. Sci., 9, 997599, https://doi.org/10.3389/fmars.2022.997599.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. J. G. Nurser, R. B. Scott, and J. A. Goff, 2013: The Impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, https://doi.org/10.1175/JPO-D-12-056.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin, 2014: The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr., 44, 29382950, https://doi.org/10.1175/JPO-D-13-0201.1.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2011: Estimation of baroclinic tide energy available for Deep Ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr., 67, 493502, https://doi.org/10.1007/s10872-011-0052-1.

    • Search Google Scholar
    • Export Citation
  • Perfect, B., N. Kumar, and J. J. Riley, 2018: Vortex structures in the wake of an idealized seamount in rotating, stratified flow. Geophys. Res. Lett., 45, 90989105, https://doi.org/10.1029/2018GL078703.

    • Search Google Scholar
    • Export Citation
  • Perron, J. T., J. W. Kirchner, and W. E. Dietrich, 2008: Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J. Geophys. Res., 113, F04003, https://doi.org/10.1029/2007JF000866.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., M. Buijsman, and J. M. Klymak, 2012: Breaking topographic lee waves in a tidal channel in Luzon Strait. Oceanography, 25 (2), 160165, https://doi.org/10.5670/oceanog.2012.51.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., G. Voet, A. Pacini, S. Tan, M. H. Alford, G. S. Carter, J. B. Girton, and D. Menemenlis, 2019: Pacific abyssal transport and mixing: Through the Samoan Passage versus around the Manihiki Plateau. J. Phys. Oceanogr., 49, 15771592, https://doi.org/10.1175/JPO-D-18-0124.1.

    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., and Coauthors, 2022: Improved bathymetric prediction using geological information: SYNBATH. Earth Space Sci., 9, e2021EA002069, https://doi.org/10.1029/2021EA002069.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., J. A. Goff, A. C. Naveira Garabato, and A. J. G. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., 2020: Interdependence of internal tide and lee wave generation at abyssal hills: Global calculations. J. Phys. Oceanogr., 50, 655677, https://doi.org/10.1175/JPO-D-19-0179.1.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2019: On the momentum flux of internal tides. J. Phys. Oceanogr., 49, 9931013, https://doi.org/10.1175/JPO-D-18-0165.1.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., B. K. Arbic, and A. M. Hogg, 2021: The impact of abyssal hill roughness on the benthic tide. J. Adv. Model. Earth Syst., 13, e2020MS002376, https://doi.org/10.1029/2020MS002376.

    • Search Google Scholar
    • Export Citation
  • Song, P., and X. Chen, 2020: Investigation of the internal tides in the northwest Pacific Ocean considering the background circulation and stratification. J. Phys. Oceanogr., 50, 31653188, https://doi.org/10.1175/JPO-D-19-0177.1.

    • Search Google Scholar
    • Export Citation
  • Tozer, B., D. T. Sandwell, W. H. F. Smith, C. Olson, J. R. Beale, and P. Wessel, 2019: Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci., 6, 18471864, https://doi.org/10.1029/2019EA000658.

    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, https://doi.org/10.1016/j.ocemod.2015.10.013.

    • Search Google Scholar
    • Export Citation
  • Vic, C., and Coauthors, 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Search Google Scholar
    • Export Citation
  • Voet, G., J. B. Girton, M. H. Alford, G. S. Carter, J. M. Klymak, and J. B. Mickett, 2015: Pathways, volume transport, and mixing of abyssal water in the Samoan Passage. J. Phys. Oceanogr., 45, 562588, https://doi.org/10.1175/JPO-D-14-0096.1.

    • Search Google Scholar
    • Export Citation
  • Voet, G., M. H. Alford, J. A. MacKinnon, and J. D. Nash, 2020: Topographic form drag on tides and low-frequency flow: Observations of nonlinear lee waves over a tall submarine ridge near Palau. J. Phys. Oceanogr., 50, 14891507, https://doi.org/10.1175/JPO-D-19-0257.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Q. Ma, F. Wang, Y. Lu, and L. J. Pratt, 2020: Seasonal variation of the deep limb of the Pacific meridional overturning circulation at Yap-Mariana Junction. J. Geophys. Res. Oceans, 125, e2019JC016017, https://doi.org/10.1029/2019JC016017.

    • Search Google Scholar
    • Export Citation
  • Wang, J., F. Wang, Y. Lu, Q. Ma, L. J. Pratt, and Z. Zhang, 2021: Pathways, volume transport, and seasonal variability of the lower deep limb of the Pacific meridional overturning circulation at the Yap-Mariana Junction. Front. Mar. Sci., 8, 672199, https://doi.org/10.3389/fmars.2021.672199.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Z. H. Xu, T. Hibiya, B. S. Yin, and F. Wang, 2021: Radiation path of diurnal internal tides in the northwestern Pacific controlled by refraction and interference. J. Geophys. Res. Oceans, 126, e2020JC016972, https://doi.org/10.1029/2020JC016972.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188, https://doi.org/10.1175/JPO-D-14-0167.1.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and L. Armi, 2012: Hydraulic control of continuously stratified flow over an obstacle. J. Fluid Mech., 700, 502513, https://doi.org/10.1017/jfm.2012.157.

    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival, 2014: Lee wave generation rates in the deep ocean. Geophys. Res. Lett., 41, 24342440, https://doi.org/10.1002/2013GL059087.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., Y. Wang, Z. Liu, J. C. McWilliams, and J. Gan, 2021: Insight into the dynamics of the radiating internal tide associated with the Kuroshio Current. J. Geophys. Res. Oceans, 126, e2020JC017018, https://doi.org/10.1029/2020JC017018.

    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, A. M. Hogg, and B. M. Sloyan, 2018: Energy loss from transient eddies due to lee wave generation in the Southern Ocean. J. Phys. Oceanogr., 48, 28672885, https://doi.org/10.1175/JPO-D-18-0077.1.

    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, A. M. Hogg, and B. M. Sloyan, 2021: The impact of lee waves on the Southern Ocean circulation. J. Phys. Oceanogr., 51, 29332950, https://doi.org/10.1175/JPO-D-20-0263.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, M. Li, and J. Tian, 2014: Spatial structure of turbulent mixing in the northwestern Pacific Ocean. J. Phys. Oceanogr., 44, 22352247, https://doi.org/10.1175/JPO-D-13-0148.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., X. Zhai, D. P. Marshall, and G. Wang, 2021: An idealized model study of eddy energetics in the western boundary “graveyard.” J. Phys. Oceanogr., 51, 12651282, https://doi.org/10.1175/JPO-D-19-0301.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., Z. Jing, and X. Zhai, 2022: Effect of small-scale topography on eddy dissipation in the northern South China Sea. J. Phys. Oceanogr., 52, 23972416, https://doi.org/10.1175/JPO-D-21-0208.1.

    • Search Google Scholar
    • Export Citation
  • You, J., Z. Xu, Q. Li, P. Zhang, B. Yin, and Y. Hou, 2023: M2 internal tide energetics and behaviors in the subpolar North Pacific. J. Phys. Oceanogr., 53, 12691290, https://doi.org/10.1175/JPO-D-22-0032.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, F., and Y. Gu, 2020: Abyssal circulation in the Philippine Sea. J. Ocean Univ. China, 19, 249262, https://doi.org/10.1007/s11802-020-4241-7.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608612, https://doi.org/10.1038/ngeo943.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., Z. Xu, R. Robertson, Q. Li, Y. Wang, and B. Yin, 2021: The three-dimensional internal tide radiation and dissipation in the Mariana arc-trench system. J. Geophys. Res. Oceans, 126, e2020JC016502, https://doi.org/10.1029/2020JC016502.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, K., and M. Nikurashin, 2019: Downstream propagation and remote dissipation of internal waves in the Southern Ocean. J. Phys. Oceanogr., 49, 18731887, https://doi.org/10.1175/JPO-D-18-0134.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, K., M. Nikurashin, and J. Tian, 2022: Non-local energy dissipation of lee waves and turbulence in the South China Sea. J. Geophys. Res. Oceans, 127, e2021JC017877, https://doi.org/10.1029/2021JC017877.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 454 454 53
Full Text Views 199 199 16
PDF Downloads 233 233 7