Reflection and Scattering of Low-Mode Internal Tides on the Continental Slope of the South China Sea

Wei Li aOcean College, Zhejiang University, Zhoushan, China
bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
and
Xiaohui Xie aOcean College, Zhejiang University, Zhoushan, China
bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
dSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Xiaohui Xie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is well known that strong low-mode internal tides generated in Luzon Strait propagate westward to impinge continental slopes in the northeastern South China Sea (SCS). The reflection and scattering of these internal tides including diurnal and semidiurnal components on the slopes are quantitatively investigated using two sets of mooring data and a linear internal tide model with realistic topography and stratification. Flux reflections computed from mooring data collected on the continental slopes are consistent with the linear model. Based on the results of the observations and simulations, a map of low-mode internal tide reflection and scattering coefficients along the continental margin in the northeastern SCS is revealed. On average, diurnal internal tides lose 38% of their energy to high modes (≥mode 4) that are assumed to dissipate on the slopes, transmit 28% onto the continental shelf, and reflect 31% back to the deep ocean. On the contrary, most of the semidiurnal energy (89%) transmits onto the continental shelf, and only 11% is scattered to high modes (7%) and reflected back to the deep ocean (4%). For diurnal internal tides, a large fraction of energy that is scattered to high modes and reflected back to the deep sea can be attributed to the critical–supercritical slopes, while the weak reflection for the semidiurnal energy is due to the subcritical slopes. These quantitative descriptions for evolutions of low-mode internal tides incident to the slopes provide an energy budget map on the continental slopes in the northeastern SCS.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaohui Xie, xhxie2013@gmail.com

Abstract

It is well known that strong low-mode internal tides generated in Luzon Strait propagate westward to impinge continental slopes in the northeastern South China Sea (SCS). The reflection and scattering of these internal tides including diurnal and semidiurnal components on the slopes are quantitatively investigated using two sets of mooring data and a linear internal tide model with realistic topography and stratification. Flux reflections computed from mooring data collected on the continental slopes are consistent with the linear model. Based on the results of the observations and simulations, a map of low-mode internal tide reflection and scattering coefficients along the continental margin in the northeastern SCS is revealed. On average, diurnal internal tides lose 38% of their energy to high modes (≥mode 4) that are assumed to dissipate on the slopes, transmit 28% onto the continental shelf, and reflect 31% back to the deep ocean. On the contrary, most of the semidiurnal energy (89%) transmits onto the continental shelf, and only 11% is scattered to high modes (7%) and reflected back to the deep ocean (4%). For diurnal internal tides, a large fraction of energy that is scattered to high modes and reflected back to the deep sea can be attributed to the critical–supercritical slopes, while the weak reflection for the semidiurnal energy is due to the subcritical slopes. These quantitative descriptions for evolutions of low-mode internal tides incident to the slopes provide an energy budget map on the continental slopes in the northeastern SCS.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaohui Xie, xhxie2013@gmail.com
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, https://doi.org/10.1175/JPO3085.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, https://doi.org/10.1038/nature14399.

    • Search Google Scholar
    • Export Citation
  • Cao, A., Z. Guo, X. Lv, J. Song, and J. Zhang, 2017: Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea. J. Mar. Syst., 172, 7583, https://doi.org/10.1016/j.jmarsys.2017.03.005.

    • Search Google Scholar
    • Export Citation
  • Chen, S., D. Chen, J. Xing, J. Hu, and Z. Sun, 2019: Features of internal tides observed near the shelf break in the northern South China Sea. Ocean Dyn., 69, 353365, https://doi.org/10.1007/s10236-019-01248-4.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T. Y. Tang, and Y.-J. Yang, 2004: Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Oceanic Eng., 29, 11051130, https://doi.org/10.1109/JOE.2004.836998.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Gong, Y., J. Xie, J. Xu, Z. Chen, Y. He, and S. Cai, 2022: A directional decomposition method to estimate the reflection and transmission of nonlinear internal waves over a slope. J. Geophys. Res. Oceans, 127, e2022JC018598, https://doi.org/10.1029/2022JC018598.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., A. Cao, and S. Wang, 2021: Influence of remote internal tides on the locally generated internal tides upon the continental slope in the South China Sea. J. Mar. Sci. Eng., 9, 1268, https://doi.org/10.3390/jmse9111268.

    • Search Google Scholar
    • Export Citation
  • Huang, X., Z. Wang, Z. Zhang, Y. Yang, C. Zhou, Q. Yang, W. Zhao, and J. Tian, 2018: Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern South China Sea. J. Phys. Oceanogr., 48, 17491770, https://doi.org/10.1175/JPO-D-17-0209.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, https://doi.org/10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, K. I. Martini, M. H. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232, https://doi.org/10.1175/JPO-D-11-0231.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, and J. D. Nash, 2013a: A coupled model for Laplace’s tidal equations in a fluid with one horizontal dimension and variable depth. J. Phys. Oceanogr., 43, 17801797, https://doi.org/10.1175/JPO-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013b: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, https://doi.org/10.1002/grl.50872.

    • Search Google Scholar
    • Export Citation
  • King, B., M. Stone, H. P. Zhang, T. Gerkema, M. Marder, R. B. Scott, and H. L. Swinney, 2012: Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans. J. Geophys. Res., 117, C04008, https://doi.org/10.1029/2011JC007681.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, https://doi.org/10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913, https://doi.org/10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2014: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech., 46, 231254, https://doi.org/10.1146/annurev-fluid-011212-140701.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., X. Xie, X. Shang, G. Chen, and H. Wang, 2019: Modal structure and propagation of internal tides in the northeastern South China Sea. Acta Oceanol. Sin., 38, 1223, https://doi.org/10.1007/s13131-019-1473-1.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2018: Temperature. Vol. 1, World Ocean Atlas 2018, NOAA Atlas NESDIS 81, 52 pp.

  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Search Google Scholar
    • Export Citation
  • Marques, O. B., and Coauthors, 2021: Internal tide structure and temporal variability on the reflective continental slope of southeastern Tasmania. J. Phys. Oceanogr., 51, 611631, https://doi.org/10.1175/JPO-D-20-0044.1.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, https://doi.org/10.1175/2011JPO4581.1.

    • Search Google Scholar
    • Export Citation
  • McDougall, T., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, version 3.06.12. SCOR/IAPSO Doc. WG127, 28 pp., https://www.teos-10.org/pubs/Getting_Started.pdf.

  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, https://doi.org/10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., 2008: Turbulent dissipation on the margins of the South China Sea. Geophys. Res. Lett., 35, L23615, https://doi.org/10.1029/2008GL035520.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Subeesh, M. P., A. S. Unnikrishnan, and P. A. Francis, 2021: Generation, propagation and dissipation of internal tides on the continental shelf and slope off the west coast of India. Cont. Shelf Res., 214, 104321, https://doi.org/10.1016/j.csr.2020.104321.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1998: Nonlinear reflection of internal waves at a density discontinuity at the base of the mixed layer. J. Phys. Oceanogr., 28, 18531860, https://doi.org/10.1175/1520-0485(1998)028<1853:NROIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2021: The interaction of internal wave groups with a uniform sloping boundary. J. Fluid Mech., 913, A23, https://doi.org/10.1017/jfm.2020.1156.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and A. P. Haines, 1987: On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech., 178, 279302, https://doi.org/10.1017/S0022112087001228.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and D. Chen, 2021: Near-surface reflection and nonlinear effects of low-mode internal tides on a continental slope. J. Phys. Oceanogr., 51, 10371051, https://doi.org/10.1175/JPO-D-20-0197.1.

    • Search Google Scholar
    • Export Citation
  • Xie, X., Q. Liu, Z. Zhao, X. Shang, S. Cai, D. Wang, and D. Chen, 2018: Deep sea currents driven by breaking internal tides on the continental slope. Geophys. Res. Lett., 45, 61606166, https://doi.org/10.1029/2018GL078372.

    • Search Google Scholar
    • Export Citation
  • Yu, H., H. Yu, L. Wang, L. Kuang, H. Wang, Y. Ding, S. Ito, and J. Lawen, 2017: Tidal propagation and dissipation in the Taiwan Strait. Cont. Shelf Res., 136, 5773, https://doi.org/10.1016/j.csr.2016.12.006.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, https://doi.org/10.1002/2014JC010014.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2020: Southward internal tides in the northeastern South China Sea. J. Geophys. Res. Oceans, 125, e2020JC016554, https://doi.org/10.1029/2020JC016554.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., and M. H. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684, https://doi.org/10.1175/2009JPO3922.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2019: Salinity. Vol. 2, World Ocean Atlas 2018, NOAA Atlas NESDIS 82, 50 pp., https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 1350 1350 187
Full Text Views 151 151 67
PDF Downloads 192 192 81