The Current Feedback on Stress Modifies the Ekman Buoyancy Flux at Fronts

Jacob O. Wenegrat aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Jacob O. Wenegrat in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1613-9931
Restricted access

Abstract

Ocean surface currents introduce variations into the surface wind stress that can change the component of the stress aligned with the thermal wind shear at fronts. This modifies the Ekman buoyancy flux, such that the current feedback on the stress tends to generate an effective flux of buoyancy and potential vorticity to the mixed layer. Scaling arguments and idealized simulations resolving both mesoscale and submesoscale turbulence suggest that this pathway for air–sea interaction can be important both locally at individual submesoscale fronts with strong surface currents—where it can introduce equivalent advective heat fluxes exceeding several hundred watts per square meter—and in the spatial mean where it reduces the integrated Ekman buoyancy flux by approximately 50%. The accompanying source of surface potential vorticity injection suggests that at some fronts the current feedback modification of the Ekman buoyancy flux may be significant in terms of both submesoscale dynamics and boundary layer energetics, with an implied modification of symmetric instability growth rates and dissipation that scales similarly to the energy lost through the negative wind work generated by the current feedback. This provides an example of how the shift of dynamical regimes into the submesoscale may promote the importance of air–sea interaction mechanisms that differ from those most active at larger scale.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob O. Wenegrat, wenegrat@umd.edu

Abstract

Ocean surface currents introduce variations into the surface wind stress that can change the component of the stress aligned with the thermal wind shear at fronts. This modifies the Ekman buoyancy flux, such that the current feedback on the stress tends to generate an effective flux of buoyancy and potential vorticity to the mixed layer. Scaling arguments and idealized simulations resolving both mesoscale and submesoscale turbulence suggest that this pathway for air–sea interaction can be important both locally at individual submesoscale fronts with strong surface currents—where it can introduce equivalent advective heat fluxes exceeding several hundred watts per square meter—and in the spatial mean where it reduces the integrated Ekman buoyancy flux by approximately 50%. The accompanying source of surface potential vorticity injection suggests that at some fronts the current feedback modification of the Ekman buoyancy flux may be significant in terms of both submesoscale dynamics and boundary layer energetics, with an implied modification of symmetric instability growth rates and dissipation that scales similarly to the energy lost through the negative wind work generated by the current feedback. This provides an example of how the shift of dynamical regimes into the submesoscale may promote the importance of air–sea interaction mechanisms that differ from those most active at larger scale.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob O. Wenegrat, wenegrat@umd.edu
Save
  • Auclair, F., and Coauthors, 2022: Coastal and regional ocean community model, version 1.3. Zenodo, https://doi.org/10.5281/ZENODO.7415055.

  • Bachman, S. D., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, https://doi.org/10.1016/j.ocemod.2016.12.003.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, and F. O. Bryan, 2020: The global sink of available potential energy by mesoscale air-sea interaction. J. Adv. Model. Earth Syst., 12, e2020MS002118, https://doi.org/10.1029/2020MS002118.

    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. P. Marshall, A. C. Naveira Garabato, A. J. G. Nurser, and J. Kaiser, 2017: Submesoscale instabilities in mesoscale eddies. J. Phys. Oceanogr., 47, 30613085, https://doi.org/10.1175/JPO-D-16-0178.%201.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A. T., 1985: Large-scale momentum exchange in the coupled atmosphere-ocean. Coupled Ocean-Atmosphere Models, Elsevier Oceanography Series, Vol. 40, Elsevier, 51–61, https://doi.org/10.1016/S0422-9894(08)70702-5.

  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.%201.

    • Search Google Scholar
    • Export Citation
  • Chen, X., W. Dewar, E. Chassignet, M. Bourassa, S. Morey, and G. Gopalakrishnan, 2022: On the feedback between air-sea turbulent momentum flux and oceanic submesoscale processes. J. Geophys. Res. Oceans, 127, e2022JC018767, https://doi.org/10.1029/2022JC018767.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., C. B. Rocha, S. T. Gille, D. Menemenlis, and M. Passaro, 2019: Characterizing the transition from balanced to unbalanced motions in the southern California Current. J. Geophys. Res. Oceans, 124, 20882109, https://doi.org/10.1029/2018JC014583.

    • Search Google Scholar
    • Export Citation
  • Chor, T., J. O. Wenegrat, and J. Taylor, 2022: Insights into the mixing efficiency of submesoscale centrifugal-symmetric instabilities. J. Phys. Oceanogr., 52, 22732287, https://doi.org/10.1175/JPO-D-21-0259.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, https://doi.org/10.1175/1520-0485(1987)017%3c1653:SEOTWO%3e2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H. A., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, https://doi.org/10.1175/JPO2842.1.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., and J. Wenegrat, 2021: Vertical structure of near-surface currents: Importance, state of knowledge, and measurement challenges. CLIVAR Variations, Vol. 19, No. 1, U.S. CLIVAR Program, Washington, DC, 19, https://doi.org/10.5065/ybca-0s03.

    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and Coauthors, 2020: S-MODE: The sub-mesoscale ocean dynamics experiment. IGARSS 2020–2020 IEEE Int. Geoscience and Remote Sensing Symp., Waikoloa, HI, Institute of Electrical and Electronics Engineers, 3533–3536, https://doi.org/10.1109/IGARSS39084.2020.9323112.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • González-Haro, C., and J. Isern-Fontanet, 2014: Global ocean current reconstruction from altimetric and microwave SST measurements. J. Geophys. Res. Oceans, 119, 33783391, https://doi.org/10.1002/2013JC009728.

    • Search Google Scholar
    • Export Citation
  • González-Haro, C., J. Isern-Fontanet, P. Tandeo, and R. Garello, 2020: Ocean surface currents reconstruction: Spectral characterization of the transfer function between SST and SSH. J. Geophys. Res. Oceans, 125, e2019JC015958, https://doi.org/10.1029/2019JC015958.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., J. Ballabrera-Poy, A. Turiel, and E. García-Ladona, 2017: Remote sensing of ocean surface currents: A review of what is being observed and what is being assimilated. Nonlinear Processes Geophys., 24, 613643, https://doi.org/10.5194/npg-24-613-2017.

    • Search Google Scholar
    • Export Citation
  • Johnson, L., C. M. Lee, E. A. D’Asaro, L. Thomas, and A. Shcherbina, 2020a: Restratification at a California Current upwelling front. Part I: Observations. J. Phys. Oceanogr., 50, 14551472, https://doi.org/10.1175/JPO-D-19-0203.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, L., C. M. Lee, E. A. D’Asaro, J. O. Wenegrat, and L. N. Thomas, 2020b: Restratification at a California Current upwelling front. Part II: Dynamics. J. Phys. Oceanogr., 50, 14731487, https://doi.org/10.1175/JPO-D-19-0204.1.

    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2017: Surface quasi-geostrophy. Fluids, 2, 7, https://doi.org/10.3390/fluids2010007.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, https://doi.org/10.1175/JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 2001: Entry, flux, and exit of potential vorticity in ocean circulation. J. Phys. Oceanogr., 31, 777789, https://doi.org/10.1175/1520-0485(2001)031<0777:EFAEOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2017: Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391432, https://doi.org/10.1017/jfm.2017.294.

    • Search Google Scholar
    • Export Citation
  • Miracca-Lage, M., C. González-Haro, D. C. Napolitano, J. Isern-Fontanet, and P. S. Polito, 2022: Can the Surface Quasi-Geostrophic (SQG) theory explain upper ocean dynamics in the South Atlantic? J. Geophys. Res. Oceans, 127, e2021JC018001, https://doi.org/10.1029/2021JC018001.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., X. Yu, J. Callies, R. Barkan, K. L. Polzin, E. E. Frajka-Williams, C. E. Buckingham, and S. M. Griffies, 2022: Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean’s upper layers. J. Phys. Oceanogr., 52, 7597, https://doi.org/10.1175/JPO-D-21-0099.1.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., T. Nakano, S. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun., 8, 14055, https://doi.org/10.1038/ncomms14055.

    • Search Google Scholar
    • Export Citation
  • Rai, S., M. Hecht, M. Maltrud, and H. Aluie, 2021: Scale of oceanic eddy killing by wind from global satellite observations. Sci. Adv., 7, eabf4920, https://doi.org/10.1126/sciadv.abf4920.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016a: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016b: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and S. Masson, 2017: Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Sci. Rep., 7, 17747, https://doi.org/10.1038/s41598-017-17939-1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and J. Gula, 2018: Dampening of submesoscale currents by air-sea stress coupling in the Californian upwelling system. Sci. Rep., 8, 13388, https://doi.org/10.1038/s41598-018-31602-3.

    • Search Google Scholar
    • Export Citation
  • Renault, L., P. Marchesiello, S. Masson, and J. C. McWilliams, 2019a: Remarkable control of western boundary currents by eddy killing, a mechanical air-sea coupling process. Geophys. Res. Lett., 46, 27432751, https://doi.org/10.1029/2018GL081211.

    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, V. Oerder, S. Jullien, and F. Colas, 2019b: Disentangling the mesoscale ocean-atmosphere interactions. J. Geophys. Res. Oceans, 124, 21642178, https://doi.org/10.1029/2018JC014628.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., and L. Xie, 1992: Air-sea boundary layer dynamics in the presence of mesoscale surface currents. J. Geophys. Res., 97, 14 43114 438, https://doi.org/10.1029/92JC01296.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, R. J. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., and Coauthors, 2023: Ocean mesoscale and frontal-scale ocean-atmosphere interactions and influence on large-scale climate: A review. J. Climate, 36, 19812013, https://doi.org/10.1175/JCLI-D-21-0982.1.

    • Search Google Scholar
    • Export Citation
  • Shao, M., and Coauthors, 2019: The variability of winds and fluxes observed near submesoscale fronts. J. Geophys. Res. Oceans, 124, 77567780, https://doi.org/10.1029/2019JC015236.

    • Search Google Scholar
    • Export Citation
  • Soares, S. M., S. T. Gille, T. K. Chereskin, E. Firing, J. Hummon, and C. B. Rocha, 2022: Transition from balanced to unbalanced motion in the eastern tropical Pacific. J. Phys. Oceanogr., 52, 17751795, https://doi.org/10.1175/JPO-D-21-0139.1.

    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 3650, https://doi.org/10.1016/j.ocemod.2015.12.004.

    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, J. C. Weil, E. G. Patton, and H. J. S. Fernando, 2020: Marine boundary layers above heterogeneous SST: Across-front winds. J. Atmos. Sci., 77, 42514275, https://doi.org/10.1175/JAS-D-20-0062.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and A. F. Thompson, 2023: Submesoscale dynamics in the upper ocean. Ann. Rev. Fluid Mech., 55, 103127, https://doi.org/10.1146/annurev-fluid-031422-095147.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., and R. Ferrari, 2008: Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr., 38, 25012518, https://doi.org/10.1175/2008JPO3797.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and M. J. McPhaden, 2016: Wind, waves, and fronts: Frictional effects in a generalized Ekman model. J. Phys. Oceanogr., 46, 371394, https://doi.org/10.1175/JPO-D-15-0162.1.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and R. S. Arthur, 2018: Response of the atmospheric boundary layer to submesoscale sea surface temperature fronts. Geophys. Res. Lett., 45, 13 50513 512, https://doi.org/10.1029/2018GL081034.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., L. N. Thomas, J. Gula, and J. C. McWilliams, 2018: Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr., 48, 21412165, https://doi.org/10.1175/JPO-D-17-0219.1.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., L. N. Thomas, M. A. Sundermeyer, J. R. Taylor, E. A. D’Asaro, J. M. Klymak, R. K. Shearman, and C. M. Lee, 2020: Enhanced mixing across the gyre boundary at the Gulf Stream front. Proc. Natl. Acad. Sci. USA, 117, 17 60717 614, https://doi.org/10.1073/pnas.2005558117.

    • Search Google Scholar
    • Export Citation
  • Xu, C., X. Zhai, and X.-D. Shang, 2016: Work done by atmospheric winds on mesoscale ocean eddies. Geophys. Res. Lett., 43, 12 17412 180, https://doi.org/10.1002/2016GL071275.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and B. Qiu, 2018: Evolution of submesoscale ageostrophic motions through the life cycle of oceanic mesoscale eddies. Geophys. Res. Lett., 45, 11 84711 855, https://doi.org/10.1029/2018GL080399.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 396 396 112
Full Text Views 289 289 102
PDF Downloads 305 305 125